Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Chem Biodivers ; 20(11): e202301018, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37695826

RESUMO

Bacterial infections that cause chronic wounds provide a challenge to healthcare worldwide because they frequently impede healing and cause a variety of problems. In this study, loaded with tungsten oxide (WO3 ), Magnesium oxide (MgO), and graphene oxide (GO) on chitosan (CS) membrane, an inexpensive polymer casting method was successfully prepared for wound healing applications. All fabricated composites were characterized by X-ray powder diffraction (XRD), Fourier transforms infrared spectroscopy (FT-IR), and thermogravimetric analysis (TGA). A scanning electron microscope (SEM) was used to study the synthesized film samples' morphology as well as their microstructure. The formed WO3/MgO@CS shows a great enhancement in the UV/VIS analysis with a highly intense peak at 401 nm and a narrow band gap (3.69 eV) compared to pure CS. The enhanced electron-hole pair separation rate is responsible for the WO3/MgO/GO@CS scaffold's antibacterial activity. Additionally, human lung cells were used to determine the average cell viability of nanocomposite scaffolds and reached 121 % of WO3 /MgO/GO@CS nanocomposite, and the IC50 value was found to be 1654 µg/mL. The ability of the scaffold to inhibit the bacteria has been tested against both E. coli and S. aureus. The 4th sample showed an inhibition zone of 11.5±0.5 mm and 13.5±0.5 mm, respectively. These findings demonstrate the enormous potential for WO3 /MgO/GO@CS membrane as wound dressings in the clinical management of bacterially infected wounds.


Assuntos
Quitosana , Grafite , Humanos , Quitosana/química , Tungstênio/química , Grafite/química , Óxido de Magnésio , Magnésio , Staphylococcus aureus , Espectroscopia de Infravermelho com Transformada de Fourier , Escherichia coli , Óxidos/química , Antibacterianos/farmacologia , Antibacterianos/química
2.
Molecules ; 28(5)2023 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-36903550

RESUMO

Mixed ligand complexes of Pd(II) and Cd(II) with N-picolyl-amine dithiocarbamate (PAC-dtc) as primary ligand and tertiary phosphine ligand as secondary ligands have been synthesized and characterized via elemental analysis, molar conductance, NMR (1H and 31P), and IR techniques. The PAC-dtc ligand displayed in a monodentate fashion via sulfur atom whereas diphosphine ligands coordinated as a bidentate mode to afford a square planner around the Pd(II) ion or tetrahedral around the Cd(II) ion. Except for complexes [Cd(PAC-dtc)2(dppe)] and [Cd(PAC-dtc)2(PPh3)2], the prepared complexes showed significant antimicrobial activity when evaluated against Staphylococcus aureus, Pseudomonas aeruginosa, Candida albicans and Aspergillus niger. Moreover, DFT calculations were performed to investigate three complexes {[Pd(PAC-dtc)2(dppe)](1), [Cd(PAC-dtc)2(dppe)](2), [Cd(PAC-dtc)2(PPh3)2](7)}, and their quantum parameters were evaluated using the Gaussian 09 program at the B3LYP/Lanl2dz theoretical level. The optimized structures of the three complexes were square planar and tetrahedral geometry. The calculated bond lengths and bond angles showed a slightly distorted tetrahedral geometry for [Cd(PAC-dtc)2(dppe)](2) compared to [Cd(PAC-dtc)2(PPh3)2](7) due to the ring constrain in the dppe ligand. Moreover, the [Pd(PAC-dtc)2(dppe)](1) complex showed higher stability compared to Cd(2) and Cd(7) complexes which can be attributed to the higher back-donation of Pd(1) complex.


Assuntos
Cádmio , Complexos de Coordenação , Ligantes , Espectroscopia de Ressonância Magnética , Complexos de Coordenação/química
3.
Bioorg Med Chem Lett ; 77: 129042, 2022 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-36332884

RESUMO

Triazine-linked triazole compounds (4a-j) were designed, synthesized, and then examined for their anticonvulsant abilities. Compounds 4e, 4f, 4g, 4i, and 4j displayed significant anticonvulsant activity in both maximum electroshock seizure (MES) and pentylenetetrazole (PTZ) induced seizure during the preliminary screening. The phase II anticonvulsant activity statistics revealed that compounds 4e, 4f, 4g, 4i, and 4j demonstrated excellent activity as compared to the conventional drugs methaqualone and valproate, supporting the potential of these triazine-linked triazole analogues as novel anticonvulsant agents. To take use of the findings, computational parameters including docking analysis and drug-likeness prediction were carried out. Molecular modelling studies supported the essential pharmacophoric information that the structure activity relationship offered. The triazine-linked triazole analogues that were investigated might be viewed as helpful models for future research and derivatization.


Assuntos
Anticonvulsivantes , Triazinas , Humanos , Anticonvulsivantes/farmacologia , Anticonvulsivantes/uso terapêutico , Anticonvulsivantes/química , Simulação de Acoplamento Molecular , Triazinas/farmacologia , Pentilenotetrazol , Convulsões/induzido quimicamente , Convulsões/tratamento farmacológico , Eletrochoque , Triazóis , Relação Estrutura-Atividade , Estrutura Molecular
4.
Molecules ; 27(3)2022 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-35163880

RESUMO

Heterocyclic compounds, including pyrimidine derivatives, exhibit a broad variety of biological and pharmacological activities. In this paper, a previously synthesized novel pyrimidine molecule is proposed, and its pharmaceutical properties are investigated. Computational techniques such as the density functional theory, ADMET evaluation, and molecular docking were applied to elucidate the chemical nature, drug likeness and antibacterial function of molecule. The viewpoint of quantum chemical computations revealed that the molecule was relatively stable and has a high electrophilic nature. The contour maps of HOMO-LUMO and molecular electrostatic potential were analyzed to illustrate the charge density distributions that could be associated with the biological activity. Natural bond orbital (NBO) analysis revealed details about the interaction between donor and acceptor within the bond. Drug likeness and ADMET analysis showed that the molecule possesses the agents of safety and the effective combination therapy as pharmaceutical drug. The antimicrobial activity was investigated using molecular docking. The investigated molecule demonstrated a high affinity for binding within the active sites of antibacterial and antimalarial proteins. The high affinity of the antibacterial protein was proved by its low binding energy (-7.97 kcal/mol) and a low inhibition constant value (1.43 µM). The formation of four conventional hydrogen bonds in ligand-protein interactions confirmed the high stability of the resulting complexes. When compared to known standard drugs, the studied molecule displayed a remarkable antimalarial activity, as indicated by higher binding affinity (B.E. -5.86 kcal/mol & Ki = 50.23 M). The pre-selected molecule could be presented as a promising drug candidate for the development of novel antimicrobial agents.


Assuntos
Antibacterianos/farmacologia , Antimaláricos/farmacologia , Bactérias/efeitos dos fármacos , Teoria da Densidade Funcional , Simulação de Acoplamento Molecular , Pirimidinas/química , Teoria Quântica , Ligantes , Modelos Moleculares
5.
Molecules ; 26(23)2021 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-34885701

RESUMO

2-azido-1H-benzo[d]imidazole derivatives 1a,b were reacted with a ß-ketoester such as acetylacetone in the presence of sodium ethoxide to obtain the desired molecules 2a,b. The latter acted as a key molecule for the synthesis of new carbazone derivatives 4a,b that were submitted to react with 2-oxo-N-phenyl-2-(phenylamino)acetohydrazonoyl chloride to obtain the target thiadiazole derivatives 6a,b. The structures of the newly synthesized compounds were inferred from correct spectral and microanalytical data. Moreover, the newly prepared compounds were subjected to molecular docking studies with DNA gyrase B and exhibited binding energy that extended from -9.8 to -6.4 kcal/mol, which confirmed their excellent potency. The compounds 6a,b were found to be with the minimum binding energy (-9.7 and -9.8 kcal/mol) as compared to the standard drug ciprofloxacin (-7.4 kcal/mol) against the target enzyme DNA gyrase B. In addition, the newly synthesized compounds were also examined and screened for their in vitro antimicrobial activity against pathogenic microorganisms Staphylococcus aureus, E. coli, Pseudomonas aeruginosa, Aspergillus niger, and Candida albicans. Among the newly synthesized molecules, significant antimicrobial activity against all the tested microorganisms was obtained for the compounds 6a,b. The in silico and in vitro findings showed that compounds 6a,b were the most active against bacterial strains, and could serve as potential antimicrobial agents.


Assuntos
Anti-Infecciosos/química , Infecções Bacterianas/tratamento farmacológico , DNA Girase/genética , Inibidores da Topoisomerase II/química , Triazóis/química , Anti-Infecciosos/síntese química , Anti-Infecciosos/farmacologia , Aspergillus niger/efeitos dos fármacos , Infecções Bacterianas/microbiologia , Candida albicans/efeitos dos fármacos , Candida albicans/patogenicidade , DNA Girase/efeitos dos fármacos , Escherichia coli/efeitos dos fármacos , Escherichia coli/patogenicidade , Humanos , Simulação de Acoplamento Molecular , Farmacocinética , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/patogenicidade , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/patogenicidade , Relação Estrutura-Atividade , Inibidores da Topoisomerase II/síntese química , Inibidores da Topoisomerase II/farmacologia , Triazóis/síntese química , Triazóis/farmacologia
6.
Molecules ; 26(22)2021 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-34833869

RESUMO

The strategic idea in this work was to increase pH values by employing natural alkali sources (i.e., HCO3- and CO32-) from four tested agro-ashes as an alternative to chemicals (i.e., lime or soda ash). The considerable proportion of carbonates and bicarbonates in the investigated ash products had remarkable features, making them viable resources. All ash materials showed a significant ability for Ca ion elimination at high initial Ca ion concentrations. A slight quantity of ash (10 g/L) was sufficient for usage on very hard water contents up to 3000 ppm. Finally, the tested agro-ash was free of cost. Furthermore, unlike other conventional precipitants, such as NaOH, Ca(OH)2, NaHCO3, Na2CO3, and CaO, they are cost effective and ecologically sustainable. There is no need to employ any additional chemicals or modify the agro-ash materials throughout the treatment process. The benefits of the manufactured ash were assessed using a SWOT analysis.

7.
RSC Adv ; 14(34): 24373-24383, 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-39108959

RESUMO

Although climate change poses a threat to the future of the world, we still have time to adapt and lessen its effects. However, the incineration of polymeric waste materials has increased the release of carbon-containing gases called greenhouse gases (GHGs) and tiny particles called 'black carbon', leading to global warming, which is the cause of the worst environmental crisis in history. Flexography is an advanced printing technique and is widely used in the packaging industry as well as in the printing of various functional films and coatings. In general, the polymeric waste produced from this industry poses a grave environmentally sustainable problem; thus, due to the fact that this waste's primary component is carbon, it has attracted our attention towards converting it into carbon-based value-added products such as graphene, which can be used in water treatment processes. The prepared material was tested as a potential coated film in a batch adsorption system for the removal of lead (Pb) and methylene blue (MB) after being supported on poly(vinyl alcohol) (PVA) film. Furthermore, contact time, solution pH, and starting pollutant concentrations were studied and used in the response surface methodology (RSM) model for optimization. The adsorption kinetics were more clearly depicted by the pseudo-second-order kinetic model. To meet the objectives of waste management and water treatment, waste-derived materials can be used in wastewater treatment, based on the "wastes-treat-wastes" approach.

8.
ACS Omega ; 9(15): 17323-17333, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38645363

RESUMO

Sulfamethazine (SMZ), a persistent antibiotic, is frequently detected in drinking water and milk. For this reason, our research aimed to develop a novel electrochemical sensor based on a magnetic nanocomposite supported on chitosan modified by 3-acetylindole through the formation of chitosan acetylindole Schiff base (Chs-Aci). The objective was to detect extremely low concentrations of SMZ in milk. The synthesized nanocomposites were characterized by various techniques, including FT-IR, XRD, EDX, SEM, and TEM. To enhance the electrocatalytic efficiency for sensitive SMZ detection in food samples, a magnetic chitosan acetylindole nanocomposite (M-Chs-Aci) was employed as a modifier for a carbon paste electrode (CPE). The electrochemical measurements revealed that the M-Chs-Aci/CPE exhibits good electrocatalytic performance compared to a bare CPE. Moreover, low detection limit, repeatability, and stability were achieved at 0.021 µM, 3.83%, and 94.87%, respectively. Finally, the proposed M-Chs-Aci/CPE proved to be highly effective in detecting SMZ in milk samples. The obtained findings paved the way for the effective usability of M-Chs-Aci/CPE as a sensor for detecting SMZ in real samples, with acceptable recoveries of 95%-98.87%.

9.
Sci Rep ; 14(1): 16601, 2024 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-39025924

RESUMO

Herein, a novel electrochemical sensor that was used for the first time for sensitive and selective detection of dopamine (DA) was fabricated. The new sensor is based on the decoration of the glassy carbon electrode surface (GC) with a polymer film of 1,3-Benzothiazol-2-yl((4-carboxlicphenyl)hydrazono)) acetonitrile (poly(BTCA). The prepared (poly(BTCA) was examined by using different techniques such as 1H NMR, 13C NMR, FTIR, and UV-visible spectroscopy. The electrochemical investigations of DA were assessed using cyclic voltammetry (CV) and differential pulse voltammetry (DPV). The results obtained showed that the modifier increased the electrocatalytic efficiency with a noticeable increase in the oxidation peak current of DA in 0.1 M phosphate buffer solution (PBS) at an optimum pH of 7.0 and scan rate of 200 mV/s when compared to unmodified GC. The new sensor displays a good performance for detecting DA with a limit of detection (LOD 3σ), and limit of quantification (LOQ 10σ) are 0.28 nM and 94 nM respectively. The peak current of DA is linearly proportional to the concentration in the range from 0.1 to 10.0 µM. Additionally, the fabricated electrode showed sufficient reproducibility, stability, and selectivity for DA detection in the presence of different interferents. The proposed poly(BTCA)/GCE sensor was effectively applied to detect DA in the biological samples.


Assuntos
Carbono , Dopamina , Técnicas Eletroquímicas , Eletrodos , Polímeros , Dopamina/análise , Carbono/química , Polímeros/química , Técnicas Eletroquímicas/métodos , Limite de Detecção , Acetonitrilas/química , Humanos , Benzotiazóis/química , Técnicas Biossensoriais/métodos
10.
Nanomaterials (Basel) ; 14(6)2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38535655

RESUMO

In this study, a sulfonation approach using chlorosulfonic acid (CSA) to prepare cellulose sulfate nanofibers (CSNFs) from raw jute fibers is demonstrated. Both elemental sulfur content and zeta potential in the CSNFs are found to increase with increasing CSA content used. However, the corresponding crystallinity in the CSNFs decreases with the increasing amount of CSA used due to degradation of cellulose chains under harsh acidic conditions. The ammonium adsorption results from the CSNFs with varying degrees of sulfonation were analyzed using the Langmuir isotherm model, and the analysis showed a very high maximum ammonium adsorption capacity (41.1 mg/g) under neutral pH, comparable to the best value from a synthetic hydrogel in the literature. The high ammonium adsorption capacity of the CSNFs was found to be maintained in a broad acidic range (pH = 2.5 to 6.5).

11.
Nanomaterials (Basel) ; 13(6)2023 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-36985972

RESUMO

A simple and eco-friendly electrochemical sensor for the anti-inflammatory diclofenac (DIC) was developed in a chitosan nanocomposite carbon paste electrode (M-Chs NC/CPE). The M-Chs NC/CPE was characterized with FTIR, XRD, SEM, and TEM for the size, surface area, and morphology. The produced electrode showed a high electrocatalytic activity to use the DIC in 0.1 M of the BR buffer (pH 3.0). The effect of scanning speed and pH on the DIC oxidation peak suggests that the DIC electrode process has a typical diffusion characteristic with two electrons and two protons. Furthermore, the peak current linearly proportional to the DIC concentration ranged from 0.025 M to 4.0 M with the correlation coefficient (r2). The sensitivity, limit of detection (LOD; 3σ), and the limit of quantification (LOQ; 10σ) were 0.993, 9.6 µA/µM cm2, 0.007 µM, and 0.024 µM, respectively. In the end, the proposed sensor enables the reliable and sensitive detection of DIC in biological and pharmaceutical samples.

12.
Heliyon ; 9(2): e13460, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36846693

RESUMO

The current study reports on the synthesis and anticancer efficacy of novel oxadiazole derivatives (8a-f) as tubulin polymerization inhibitors. NMR, mass, and elemental studies were used to confirm the newly produced compounds. In contrast to the conventional medicine colchicine, compounds 8e and 8f demonstrated stronger sensitivity and improved IC50 values in the range of 3.19-8.21 µM against breast MCF-7, colorectal HCT116, and liver HepG2 cancer cell lines. The target compounds were tested for enzymatic activity against the tubulin enzyme. Compounds 8e and 8f were shown to have the most effective inhibitory action among the new compounds, with IC50 values of 7.95 and 9.81 nM, respectively. As compared to the reference drug, molecular docking investigations of the developed compounds revealed the crucial hydrogen bonding in addition to the hydrophobic interaction at the binding site, assisting in the prediction of the structural requirements for the found anticancer activity. These findings indicate that the 1,3,4-oxadizole scaffold has the potential for future research into new anticancer medicines.

13.
Life (Basel) ; 13(4)2023 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-37109441

RESUMO

Since the first report of the organoselenium compound, ebselen, as a potent inhibitor of the SARS-CoV-2 Mpro main protease by Z. Jin et al. (Nature, 2020), different OSe analogs have been developed and evaluated for their anti-COVID-19 activities. Herein, organoselenium-clubbed Schiff bases were synthesized in good yields (up to 87%) and characterized using different spectroscopic techniques. Their geometries were studied by DFT using the B3LYP/6-311 (d, p) approach. Ten FDA-approved drugs targeting COVID-19 were used as model pharmacophores to interpret the binding requirements of COVID-19 inhibitors. The antiviral efficiency of the novel organoselenium compounds was assessed by molecular docking against the 6LU7 protein to investigate their possible interactions. Our results showed that the COVID-19 primary protease bound to organoselenium ligands with high binding energy scores ranging from -8.19 to -7.33 Kcal/mol for 4c and 4a to -6.10 to -6.20 Kcal/mol for 6b and 6a. Furthermore, the docking data showed that 4c and 4a are good Mpro inhibitors. Moreover, the drug-likeness studies, including Lipinski's rule and ADMET properties, were also assessed. Interestingly, the organoselenium candidates manifested solid pharmacokinetic qualities in the ADMET studies. Overall, the results demonstrated that the organoselenium-based Schiff bases might serve as possible drugs for the COVID-19 epidemic.

14.
Sci Rep ; 13(1): 9058, 2023 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-37270645

RESUMO

Two organoselenium thiourea derivatives, 1-(4-(methylselanyl)phenyl)-3-phenylthiourea (DS036) and 1-(4-(benzylselanyl)phenyl)-3-phenylthiourea (DS038) were produced and categorized using FTIR and NMR (1H and 13C). The effectiveness of the above two compounds as C-steel corrosion inhibitors in molar HCl was evaluated using the potentiodynamic polarization (PD) and electrochemical impedance spectroscopy (EIS) techniques. PD findings indicate that DS036 and DS038 have mixed-type features. EIS results show that growing their dose not only changes the polarization resistance of C-steel from 18.53 to 363.64 and 463.15 Ω cm2 but also alters the double layer capacitance from 710.9 to 49.7 and 20.5 µF cm-2 in the occurrence of 1.0 mM of DS036 and DS038, respectively. At a 1.0 mM dose, the organoselenium thiourea derivatives displayed the highest inhibition efficiency of 96.65% and 98.54%. The inhibitory molecule adsorption proceeded along the Langmuir isotherm on the steel substrate. The adsorption-free energy of the adsorption process was also intended and indicated a combined chemical and physical adsorption on the C-steel interface. FE-SEM studies support the adsorption and protective abilities of the OSe-based molecule inhibitor systems. In Silico calculations (DFT and MC simulations) explored the attraction between the studied organoselenium thiourea derivatives and corrosive solution anions on a Fe (110) surface. The obtained results show that these compounds can make a suitable preventing surface and control the corrosion rate.

15.
Chemosphere ; 322: 138235, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36841457

RESUMO

Because of the excessive use of fossil fuels, CO2 emissions into the environment are increasing. An efficient method of converting CO2 to useful carbonaceous products in the presence of light is one way to address the issues associated with energy and environmental remediation. In2S3/WS2 heterostructure has been fabricated using the efficient hydrothermal method. The results of structural, morphological, optical, and photo/electrochemical characterization confirm the formation of a hierarchical, layered heterostructure of type-II. Enhanced photocatalytic activity is observed in InS/WS heterostructure compared to pristine In2S3 and WS2. InS/WS heterostructure exhibit higher photocatalytic activity than pure In2S3 and WS2. For 12 h, photocatalytic CO2 reduction produces 213.4 and 188.6 µmol of CO and CH4, respectively. Furthermore, the photocatalytic ability of the synthesized materials to degrade different parabens (Methyl: MPB, Ethyl: EPB, and Benzyl: BPB) under visible radiation was evaluated. Under optimized conditions, the InS/WS heterostructure degraded 88.6, 90.4, and 95.8% of EPB, BPB, and MPB, respectively, in 90 min. The mechanism of photocatalysis was discussed in detail. MCF-7 cell viability was assessed and found to exhibit low mortality in InS/WS treated MPB aqueous solution. InS/WS heterostructure could improve the fabrication of more sulphide-based layered materials to combat environmental pollution.


Assuntos
Recuperação e Remediação Ambiental , Água , Dióxido de Carbono , Parabenos , Poluição Ambiental
16.
Nanomaterials (Basel) ; 12(14)2022 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-35889578

RESUMO

A simple electrochemical sensor for nicotine (NIC) detection was performed. The sensor based on a glassy carbon electrode (GCE) was modified by (1,2-naphthoquinone-4-sulphonic acid)(Nq) decorated by graphene oxide (GO) nanocomposite. The synthesized (GO) nanosheets were characterized using X-ray diffraction (XRD), Raman spectroscopy, scanning electron microscope (SEM), transmission electron microscope (TEM), FT-IR, and UV-Visible Spectroscopy. The insertion of Nq with GO nanosheets on the surface of GCE displayed high electrocatalytic activity towards NIC compared to the bare GCE. NIC determination was performed under the optimum conditions using 0.10 M of Na2SO4 as a supporting electrolyte with pH 8.0 at a scan rate of 100 mV/s using both cyclic voltammetry (CV) and differential pulse voltammetry (DPV). This electrochemical sensor showed an excellent result for NIC detection. The oxidation peak current increased linearly with a 6.5-245 µM of NIC with R2 = 0.9999. The limit of detection was 12.7 nM. The fabricated electrode provided satisfactory stability, reproducibility, and selectivity for NIC oxidation. The reliable GO/Nq/GCE sensor was successfully applied for detecting NIC in the tobacco product and a urine sample.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA