Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Pharm Dev Technol ; 28(9): 803-810, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37664988

RESUMO

Fungal skin diseases are recognized as a global burden disease that affect human quality adjusted life. Terbinafine belongs to allylamine and broad-spectrum antifungal drugs but considered practically insoluble. Different lipids/surfactant with two different molar ratios were investigated with Span 40-based niosomes; characterized for size, morphology, loading capacity (EE%), in vitro release, kinetics, and antifungal activities. Vesicle sizes (0.19-1.23 µm), EE% (25-99%), zeta potential (> -32 mV), and in vitro release rates were dependent on both lipid types and ratios. Higher ratios of Poloxamer 407 preferably formed mixed micelles rather than forming noisome bilayers. Both Compritol and Precirol were deemed to be potential alternatives to cholesterol as bilayer membrane stabilizers. Terbinafine-loaded Compritol and Precirol stabilized niosomes were successfully prepared and demonstrated superior antifungal activities in vitro (inhibition zones) using Candida albicans ATCC 60913.


Assuntos
Antifúngicos , Lipossomos , Humanos , Antifúngicos/farmacologia , Terbinafina/farmacologia , Poloxâmero , Tensoativos , Tamanho da Partícula
2.
Mar Drugs ; 20(10)2022 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-36286452

RESUMO

In this study, the LC-HRMS-assisted chemical profiling of Hyrtios erectus sponge led to the annotation of eleven major compounds (1-11). H. erectus-derived crude extract (HE) was tested in vitro for its antiproliferative activity against three human cancer cell lines, Hep-G2 (human liver cancer cell line), MCF-7 (breast cancer cell line), and Caco-2 (colon cancer cell line), before and after encapsulation within niosomes. Hyrtios erectus extract showed moderate in vitro antiproliferative activities towards the studied cell lines with IC50 values 18.5 ± 0.08, 15.2 ± 0.11, and 13.4 ± 0.12, respectively. The formulated extract-containing niosomes (size 142.3 ± 10.3 nm, PDI 0.279, and zeta potential 22.8 ± 1.6) increased the in vitro antiproliferative activity of the entrapped extract significantly (IC50 8.5 ± 0.04, 4.1 ± 0.07, and 3.4 ± 0.05, respectively). A subsequent computational chemical study was performed to build a sponge-metabolite-targets-cancer diseases network, by focusing on targets that possess anticancer activity toward the three cancer types: breast, colon, and liver. Pubchem, BindingDB, and DisGenet databases were used to build the network. Shinygo and KEGG databases in addition to FunRich software were used for gene ontology and functional analysis. The computational analysis linked the metabolites to 200 genes among which 147 genes related to cancer and only 64 genes are intersected in the three cancer types. The study proved that the co-occurrence of compounds 1, 2, 3, 7, 8, and 10 are the most probable compounds possessing cytotoxic activity due to large number of connections to the intersected cytotoxic genes with edges range from 9-14. The targets possess the anticancer effect through Pathways in cancer, Endocrine resistance and Proteoglycans in cancer as mentioned by KEGG and ShinyGo 7.1 databases. This study introduces niosomes as a promising strategy to promote the cytotoxic potential of H. erectus extract.


Assuntos
Antineoplásicos , Lipossomos , Humanos , Antineoplásicos/farmacologia , Antineoplásicos/química , Células CACO-2 , Misturas Complexas , Oceano Índico , Proteoglicanas , Poríferos
3.
Molecules ; 28(1)2022 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-36615455

RESUMO

Curcumin is a natural polyphenolic compound with well-known anticancer properties. Poor solubility and permeability hamper its use as an anticancer pharmaceutical product. In this study, L-arginine, a basic amino acid and a small hydrophilic molecule, was utilized to form a salt with the weak acid curcumin to enhance its solubility and potentiate the anticancer activities of curcumin. Two methods were adopted for the preparation of curcumin: L-arginine salt, namely, physical mixing and coprecipitation. The ion pair or salt was characterized for docking, solubility, DSC, FTIR, XRD, in vitro dissolution, and anticancer activities using MCF7 cell lines. The molecular docking suggested a salt/ion-pair complex between curcumin and L-arginine. Curcumin solubility was increased 335- and 440-fold by curcumin in L-arginine, physical, and co-precipitated mixtures, respectively. Thermal and spectral analyses supported the molecular docking and formation of a salt/ion pair between curcumin and L-arginine. The cytotoxicity of curcumin L-arginine salt significantly improved (p < 0.05) by 1.4-fold, as evidenced by the calculated IC50%, which was comparable to Taxol (the standard anticancer drug but with common side effects).


Assuntos
Antineoplásicos , Curcumina , Humanos , Curcumina/farmacologia , Curcumina/química , Solubilidade , Arginina/química , Simulação de Acoplamento Molecular , Antineoplásicos/farmacologia , Antineoplásicos/química , Cloreto de Sódio
4.
Saudi Pharm J ; 30(5): 635-645, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35693440

RESUMO

According to the American College of Cardiology/American Heart Association (ACC/AHA), both aspirin and statin are used in the primary prevention of cardiovascular diseases. Aspirin (ASA) is contraindicated if there is gastrointestinal bleeding because it will exaggerate the condition. In this study, the effect of surfactant; sodium lauryl sulfate (SLS), in enhancing the in vitro dissolution of simvastatin (SIM) and ASA, as well as gastric irritation and upset, was studied. Oral tablets containing both ASA and SIM with and without the SLS were manufactured using the direct compression technique. The prepared tablets were characterized with respect to hardness, friability, uniformity of dosage units, in vitro disintegration, and dissolution. The effect of the addition of SLS in reducing the in vivo irritation and protection of gastric mucosa were also investigated. The results showed that the compressed tablets possessed sufficient hardness, acceptable friability, and are uniform with respect to disintegration, drugs contents, and tablet weight. The results showed that SIM alone exhibited a gastroprotective effect on the induced irritation. In addition, the incorporation of the SLS in the tablets containing SIM and ASA significantly enhanced the dissolution rates of both drugs and significantly decreased the gastric irritation and the ulcer index. The ulcer index of aspirin was decreased from 2.3 for tablets manufactured without SLS to 0.8 for tablets containing SLS. In a conclusion, the addition of pH modifier surfactant; SLS could enhance the dissolution rate of poorly soluble acidic drugs, reduce gastric upset and irritation without any effect on the main characters of the tablets. Moreover, the addition of SLS is very useful in improving the therapeutic activities and reducing the side effects of ASA and SIM for patients who require long-term administration of these drugs.

5.
AAPS PharmSciTech ; 21(5): 175, 2020 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-32556636

RESUMO

Wound-healing is a very complex and evolutionary process that involves a great variety of dynamic steps. Although different pharmaceutical agents have been developed to hasten the wound-healing process, the existing agents are still far from optimal. The present work aimed to prepare and evaluate the wound-healing efficacy of phenytoin-loaded copper nanoparticles (PHT-loaded CuNPs). CuNPs were biosynthesized using licorice aqueous extract. The prepared CuNPs were loaded with PHT by adsorption, characterized, and evaluated for wound-healing efficiency. Results showed that both plain and PHT-loaded CuNPs were monodisperse and exhibited a cubic and hexagonal morphology. The mechanism by which PHT was adsorbed on the surface of CuNPs was best fit by the Langmuir model with a maximum loaded monolayer capacity of 181 mg/g. The kinetic study revealed that the adsorption reaction followed the pseudo-second order while the thermodynamic parameters indicated that the adsorption process was physical in nature and endothermic, and occurred spontaneously. Moreover, the in vivo wound-healing activity of PHT-loaded CuNP impregnated hydroxypropylmethyl cellulose (HPMC) gel was carried out using an excisional wound model in rats. Data showed that PHT-loaded CuNPs accelerated epidermal regeneration and stimulated granulation and tissue formation in treated rats compared to controls. Additionally, quantitative real-time polymerase chain reaction (RT-PCR) analysis showed that lesions treated with PHT-loaded CuNPs were associated with a marked increase in the expression of dermal procollagen type I and a decrease in the expression of the inflammatory JAK3 compared to control samples. In conclusion, PHT-loaded CuNPs are a promising platform for effective and rapid wound-healing.


Assuntos
Cobre/farmacologia , Nanopartículas , Fenitoína/farmacologia , Cicatrização/efeitos dos fármacos , Animais , Colágeno Tipo I/metabolismo , Janus Quinase 3/metabolismo , Masculino , Ratos , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Pele/patologia
6.
Dermatol Ther ; 32(5): e13034, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31355514

RESUMO

Intralesional (IL) vitamin D3 is an emerging treatment for cutaneous warts. However, its effectiveness and exact mechanism is not fully evaluated. We aimed to compare the efficacy and safety of IL purified protein derivative (PPD) and IL vitamin D3 in multiple warts and to investigate their systemic effect clinically and immunologically. Forty-five patients with multiple extragenital warts were treated with IL-PPD (22 patients) or IL vitamin D3 injection (23 patients) for a maximum of three sessions at 3 week intervals. Decrease in size and number of warts and adverse effects were evaluated. Serum interleukin-12 (IL-12) and interferon-gamma (IFN-γ) levels were measured before and 3 weeks after the last session. Higher clearance rates for all warts were observed with IL-PPD compared to IL vitamin D (59.1% vs. 21.7% complete clearance, p < .001). Significant increase was found in both serum IL-12 and IFN-γ after PPD treatment (p = .034 and p = .04, respectively), but only IFN-γ after vitamin D3 treatment (p = 0.02). Both IL vitamin D3 and PPD showed positive results in treatment of multiple warts. However, PPD showed higher clinical efficacy and more increase in both IL-12 and IFN-γ levels.


Assuntos
Colecalciferol/administração & dosagem , Dermatoses do Pé/tratamento farmacológico , Imunidade Celular , Células Th1/imunologia , Verrugas/tratamento farmacológico , Adulto , Biomarcadores/sangue , Relação Dose-Resposta a Droga , Ensaio de Imunoadsorção Enzimática , Feminino , Seguimentos , Dermatoses do Pé/sangue , Dermatoses do Pé/imunologia , Humanos , Injeções Intralesionais , Interferon gama/sangue , Interleucina-12/sangue , Masculino , Estudos Prospectivos , Resultado do Tratamento , Vitaminas/administração & dosagem , Verrugas/sangue , Verrugas/imunologia
7.
J Liposome Res ; 29(2): 183-194, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30221566

RESUMO

Bio-identical progesterone (PRG) is an exogenous female steroidal hormone which is used for treatment of polycystic ovary syndrome (PCOS). However, it suffers from poor bioavailability due to hepatic metabolism and poor solubility. The target of this work was to evaluate and statistically optimize PRG-loaded nanovesicle transethosomes (NVTEs) based in mucoadhesive gel for transvaginal delivery of PRG as potential luteal-phase support. A 24 full factorial design was used to explore the effect of phosphatidylcholine (PC), Tween 80, cetyltrimethyl ammonium bromide and ethanol concentration on particle size, entrapment efficiency (EE%), % in vitro PRG release after 24 h and transvaginal flux. PRG-loaded NVTEs were prepared by injection sonication method. The results revealed that the mean particle sizes ranged from 133.3 ± 3.42 to 349.5 ± 1.24 nm, zeta potential ranged from -23.5 ± 3.84 to +74.6 ± 4.97 mV, EE% ranged from 87.93 ± 3.58 to 97.05 ± 2.61%, % PRG release ranged from 50.9 ± 2.75 to 90.69 ± 2.07 and transvaginal flux ranged from 0.274 ± 0.03 to 0.531 ± 0.04 mg/cm2/h. The optimized formulation was subjected to transmission electron microscope for morphological examination and then incorporated in the mucoadhesive vaginal gel using Carbopol 974, hydroxyl propyl methylcellulose and sodium alginate. The optimized formulation was clinically studied in anovulatory PCOS and showed a significant increase in the serum PRG, endometrial thickness, echogenicity degree and the pregnancy rate. Briefly, PRG-loaded NVTEs vaginal gel might be a promising formulation for luteal phase support and increase pregnancy rate in anovulatory PCOS.


Assuntos
Lipossomos/química , Nanopartículas/química , Síndrome do Ovário Policístico/tratamento farmacológico , Progesterona/uso terapêutico , Progestinas/uso terapêutico , Administração Intravaginal , Adulto , Alginatos/química , Anovulação , Disponibilidade Biológica , Liberação Controlada de Fármacos , Feminino , Humanos , Derivados da Hipromelose/química , Letrozol/administração & dosagem , Letrozol/uso terapêutico , Indução da Ovulação , Tamanho da Partícula , Permeabilidade , Gravidez , Taxa de Gravidez , Progesterona/administração & dosagem , Progestinas/administração & dosagem , Solubilidade , Cremes, Espumas e Géis Vaginais
8.
Drug Dev Ind Pharm ; 45(10): 1624-1634, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31353967

RESUMO

Nano-emulgel has become one of the most significant controlled release systems, which has the advantages of both gels and nano-emulsions. This work aims at the formulation of nasal nano-emulgel for resveratrol, employing carbopol 934 and poloxamer 407 as the gelling agents. The optimum nano-emulsion was determined through further characterization of the selected system. The nasal nano-emulgel was prepared and tested for the in vitro release, the release kinetics, FTIR, ex vivo permeation, nasal mucosa toxicity, and in vivo pharmacokinetic study. The optimum nano-emulsion consisted of Tween 20, Capryol 90, and Transcutol at a ratio of (54.26: 23.81: 21.93%v/v), and it exhibited transmittance of 100%, resveratrol solubility of 159.9 ± 6.4 mg/mL, globule size of 30.65 nm. The in vitro resveratrol released from nano-emulsion and nasal nano-emulgel was 96.17 ± 4.43% and 78.53 ± 4.7%, respectively. Ex vivo permeation was sustained during 12 h up to 63.95 ± 4.7%. The histopathological study demonstrated that the formula is safe and tolerable to the nasal mucosa. Cmax and AUC (0-∞) of resveratrol obtained after nasal administration of nasal nano-emulgel was 2.23 and 8.05 times, respectively. Similarly, Tmax was increased up to 3.67 ± 0.82 h. The optimized nasal nano-emulgel established intranasal safety and bioavailability enhancement so it is considered as a well-designed system to target the brain.


Assuntos
Emulsões/química , Emulsões/farmacocinética , Géis/química , Géis/farmacocinética , Mucosa Nasal/metabolismo , Resveratrol/química , Resveratrol/farmacocinética , Administração Intranasal/métodos , Animais , Disponibilidade Biológica , Química Farmacêutica/métodos , Sistemas de Liberação de Medicamentos/métodos , Masculino , Poloxâmero/química , Polímeros/química , Polissorbatos/química , Propilenoglicóis/química , Ratos , Ratos Wistar , Solubilidade/efeitos dos fármacos
9.
AAPS PharmSciTech ; 20(5): 181, 2019 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-31049748

RESUMO

Resveratrol (RES) is a potent antioxidant used for the management of several central nervous system diseases. RES bioavailability is less than 1 owing to its low solubility and extensive intestinal and hepatic metabolism. The aim of the study was to enhance RES bioavailability through developing intranasal transferosomal mucoadhesive gel. Reverse evaporation-vortexing sonication method was employed to prepare RES-loaded transferosomes. Transferosomes were developed via 34 definitive screening design, using soya lecithin, permeation enhancers, and surfactants. The optimized formula displayed spherical shape with vesicle size of 83.79 ± 2.54 nm and entrapment efficiency (EE%) of 72.58 ± 4.51%. Mucoadhesive gels were prepared and evaluated, then optimized RES transferosomes were incorporated into the selected gel and characterized using FTIR spectroscopy, in vitro release, and ex vivo permeation study. Histopathological examination of nasal mucosa and in vivo pharmacokinetic study were conducted. In vitro drug release from transferosomal gel was 65.87 ± 2.12% and ex vivo permeation was 75.95 ± 3.19%. Histopathological study confirmed the safety of the optimized formula. The Cmax of RES in the optimized RES trans-gel was 2.15 times higher than the oral RES suspension and AUC(0-∞) increased by 22.5 times. The optimized RES trans-gel developed intranasal safety and bioavailability enhancement through passing hepatic and intestinal metabolism.


Assuntos
Antioxidantes/administração & dosagem , Antioxidantes/farmacocinética , Encéfalo/metabolismo , Resveratrol/administração & dosagem , Resveratrol/farmacocinética , Adesivos , Administração Intranasal , Animais , Disponibilidade Biológica , Sistemas de Liberação de Medicamentos , Géis , Masculino , Mucosa Nasal/metabolismo , Ratos , Ratos Wistar
10.
Saudi Pharm J ; 26(8): 1162-1169, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30532637

RESUMO

Cancer may be difficult to target, however, if cancer targeted this provides the chance for a better and more effective treatment. Quantum dots (Qdots) coated vapreotide (VAP) as a somatostatin receptors (SSTRs) agonist can be efficient targeting issue since may reduce side effects and increase drug delivery to the target tissue. This study highlights the active targeting of cancer cells by cells imaging with improving the therapeutic outcomes. VAP was conjugated to Qdots using amine-to-sulfhydryl crosslinker. The synthesized Qdots-VAP was characterized by determination of size, measuring the zeta-potential and UV fluorometer. The cellular uptake was studied using different cell lines. Finally, the Qdots-VAP was injected into a rat model. The results showed a size of 479.8 ±â€¯15 and 604.88 ±â€¯17 nm for unmodified Qdots and Qdots-VAP respectively, while the zeta potential of particles went from negative to positive charge which proved the conjugation of VAP to Qdots. The fluorometer recorded a redshift for Qdots-VAP compared with unmodified Qdots. Moreover, cellular uptake exhibited high specific binding with cells which express SSTRs using confocal microscopy and flow cytometry (17.3 MFU comparing to 3.1 MFU of control, P < 0.001). Finally, an in vivo study showed a strong accumulation of Qdots-VAP in the blood cells (70%). In conclusion, Qdots-VAP can play a crucial role in cancer diagnosis and treatment of blood cells diseases when conjugated with VAP as SSTRs agonist.

11.
J Pharm Sci ; 113(7): 1934-1945, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38369023

RESUMO

Alzheimer's disease is the most serious neurodegenerative disorder characterized by cognitive and memorial defects alongside deterioration in behavioral, thinking and social skills. Donepezil hydrochloride (DPZ) is one of the current two FDA-approved cholinesterase inhibitors used for the management of Alzheimer's disease. The current study aimed to formulate hyaluronic acid-coated transfersomes containing DPZ (DPZ-HA-TFS) for brain delivery through the intranasal pathway to surpass its oral-correlated GIT side effects. DPZ-HA-TFS were produced using a thin film hydration method and optimized with a 24 factorial design. The influence of formulation parameters on vesicle diameter, entrapment, cumulative release after 8 h, and ex vivo nasal diffusion after 24 h was studied. The optimal formulation was then evaluated for morphology, stability, histopathology and in vivo biodistribution studies. The optimized DPZ-HA-TFS formulation elicited an acceptable vesicle size (227.5 nm) with 75.83% entrapment efficiency, 37.94% cumulative release after 8 h, 547.49 µg/cm2 permeated through nasal mucosa after 24 h and adequate stability. Histopathological analysis revealed that the formulated DPZ-HA-TFS was nontoxic and tolerable for intranasal delivery. Intranasally administered DPZ-HA-TFS manifested significantly superior values for drug targeting index (5.08), drug targeting efficiency (508.25%) and direct nose-to-brain transport percentage (80.32%). DPZ-HA-TFS might be deemed as a promising intranasal nano-cargo for DPZ cerebral delivery to tackle Alzheimer's disease safely, steadily and in a non-invasive long-term pattern.


Assuntos
Administração Intranasal , Doença de Alzheimer , Encéfalo , Inibidores da Colinesterase , Donepezila , Ácido Hialurônico , Mucosa Nasal , Donepezila/administração & dosagem , Donepezila/farmacocinética , Donepezila/farmacologia , Doença de Alzheimer/tratamento farmacológico , Ácido Hialurônico/química , Ácido Hialurônico/administração & dosagem , Animais , Encéfalo/metabolismo , Encéfalo/efeitos dos fármacos , Inibidores da Colinesterase/administração & dosagem , Inibidores da Colinesterase/farmacocinética , Mucosa Nasal/metabolismo , Mucosa Nasal/efeitos dos fármacos , Liberação Controlada de Fármacos , Distribuição Tecidual , Ratos , Masculino , Sistemas de Liberação de Medicamentos/métodos , Nanopartículas/química , Portadores de Fármacos/química , Ratos Wistar , Tamanho da Partícula
12.
Pharmaceutics ; 15(2)2023 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-36840035

RESUMO

Since its introduction to the market in the 1970s, ketoprofen has been widely used due to its high efficacy in moderate pain management. However, its poor solubility and ulcer side effects have diminished its popularity. This study prepared forms of ketoprofen modified with three basic excipients: tris, L-lysine, and L-arginine, and investigated their ability to improve water solubility and reduce ulcerogenic potential. The complexation/salt formation of ketoprofen and the basic excipients was prepared using physical mixing and coprecipitation methods. The prepared mixtures were studied for solubility, docking, dissolution, differential scanning calorimetry (DSC), Fourier transform infrared spectroscopy (FTIR), in vivo evaluation for efficacy (the writhing test), and safety (ulcerogenic liability). Phase solubility diagrams were constructed, and a linear solubility (AL type) curve was obtained with tris. Docking studies suggested a possible salt formation with L-arginine using Hirshfeld surface analysis. The order of enhancement of solubility and dissolution rates was as follows: L-arginine > L-lysine > tris. In vivo analgesic evaluation indicated a significant enhancement of the onset of action of analgesic activities for the three basic excipients. However, safety and gastric protection indicated that both ketoprofen arginine and ketoprofen lysine salts were more favorable than ketoprofen tris.

13.
Pharmaceuticals (Basel) ; 16(9)2023 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-37765092

RESUMO

Hormonal replacement therapy is the mainstay treatment to improve quality of life and reduce mortality. With the increasing number of young women with early menopause, women now live longer (increased life expectancy). However, poor patient compliance with oral estrogen therapy has emerged. Intravaginal estrogen therapy can provide significant benefits with minimal risk for postmenopausal women with symptoms of the lower urinary tract and vaginal area but who do not want to take oral estrogen. In this study, estradiol-loaded solid lipid nanoparticles (SLPs) were prepared from compritol ATO 888 and precirol ATO 5, and two different stabilizers (Pluronic F127 and Tween 80) were studied. Selected SLPs (F3 and F6) were coated with different concentrations of the mucoadhesive and sustained-release polymer chitosan. Furthermore, gelation time, viscosity, mucoadhesion, ex vivo permeation, and in vitro irritation for vaginal irritation were studied. Particle sizes ranged between 450-850 nm, and EE% recorded 50-83% for the six SLPs depending on the type and amount of lipids used. Cumulative % drug release was significantly enhanced and was recorded at 51% to 83%, compared to that (less than 20%) for the control suspension of estradiol. Furthermore, extensive thermal gelation and mucoadhesion were recorded for chitosan-coated SLPs. Up to 2.2-fold increases in the permeation parameters for SLPs gels compared to the control suspension gel were recorded, revealing a slight to moderate irritation on Hela cell lines. These findings demonstrated chitosan-coated estradiol SLPs as novel and promising vaginal mucoadhesive hybrid nanogels.

14.
Pharmaceuticals (Basel) ; 16(9)2023 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-37765131

RESUMO

Hypertension can begin in childhood; elevated blood pressure in children is known as pediatric hypertension. Contrary to adult hypertension, there is a scarcity of commercial medications suitable for the treatment of pediatric hypertension. The aim of this study was to develop orally dispersible films (ODFs) loaded with captopril for the treatment of hypertension in children. Captopril-loaded ODFs were composed of different blends of synthetic polymers, such as polyvinyl alcohol (PVA) and polyvinyl pyrrolidone, and natural polymers, such as sodium alginate (SA) and gelatin. The ODFs were characterized based on their mechanical and thermal properties, drug content, surface morphology, in vitro disintegration, in vitro release, and bioavailability. A novel HPLC method with precolumn derivatization was developed to precisely and selectively determine captopril levels in plasma. A low concentration of PVA and a high concentration of SA generated ODFs with faster hydration and disintegration rates. SA-based films exhibited fast disintegration properties (1-2 min). The optimized modified-release film (F2) showed significant (p < 0.05) enhancement in bioavailability (AUC = 1000 ng min/mL), with a value 1.43 times that of Capoten® tablets (701 ng min/mL). While the plasma concentration peaking was in favor of the immediate-release tablet, Tmax was significantly prolonged by 5.4 times for the optimized ODF (3.59 h) compared with that of the tablets (0.66 h). These findings indicate uniform and sustained plasma concentrations, as opposed to the pulsatile and rapid plasma peaking of captopril from the immediate-release tablets. These findings suggest that the modified release of oral films could offer more favorable plasma profiles and better control of hypertension than the conventional release tablets.

15.
Pharmaceutics ; 15(9)2023 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-37765211

RESUMO

Ischemic stroke is the second-leading cause of death. Hyperglycemia, which is characteristic of diabetes mellitus, contributes to the development of endothelial dysfunction and increases the risk of stroke. Isoxsuprine is an efficient beta-adrenergic agonist that improves blood flow to the ischemic aria and stops the infarct core from growing. However, low bioavailability, a short biological half-life, and first-pass hepatic metabolism reduce the therapeutic efficacy of oral isoxsuprine. Therefore, the authors focused on developing isoxsuprine-loaded liposomes containing ethanol and propylene glycol (ILEP) formulation as nasal drops for the treatment of ischemic stroke in diabetic patients. Different ILEP formulations were optimized using Design Expert software, and the selected formulation was examined in vivo for its anti-stroke effect using a rat model of diabetes and stroke. The optimized ILEP, composed of 15% propylene glycol, 0.16% cholesterol, 10% ethanol, and 3.29% phospholipid, improved the sustainability, permeation, and targeting of isoxsuprine. Furthermore, the in vivo studies verified the improved neurological behavior and decreased dead shrunken neurons and vascular congestion of the rats treated with the optimized ILEP formulation, demonstrating its anti-stroke activity. In conclusion, our study found that treatment with an optimized ILEP formulation prevented the initiation and severity of stroke, especially in diabetic patients.

16.
Curr Drug Metab ; 23(4): 329-338, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35319360

RESUMO

BACKGROUND: Aceclofenac is a non-steroidal anti-inflammatory drug and a potent analgesic. However, its oral ingestion may cause gastrointestinal problems, including dyspepsia, abnormal pain, nausea, diarrhea, and ulcerative colitis. OBJECTIVE: This study aimed to prepare vesicular-based enteric microspheres containing aceclofenac by ionotropic gelation technique to minimize gastric irritation in rats. METHODS: The micron-size vesicles were prepared by the ionic-orifice gelation method. Three types of vesicularbased microcapsules containing aceclofenac were prepared by employing sodium alginate as the coating material in combination with Eudragit L100, Eudragit S100, and polyvinylpyrrolidone PVP K90. The drug to sodium alginate to polymer ratios were 1:0.5:0.5, 1:1:1, and 1:1.5:1.5, respectively. Gelation of sodium alginate was induced by the dropwise addition of calcium chloride solution (10 % w/v). Aceclofenac-loaded microspheres were evaluated in terms of aceclofenac content and in vitro drug release, and FTIR, DSC, and XRD were used for physicochemical evaluation of some selected formulae. The effects of microencapsulation on aceclofenac-induced ulcerative activity in male Wistar rats were also investigated. RESULTS: The results indicated no interaction between aceclofenac and microcapsules forming polymers. In addition, microcapsules formulations M1, M4, and M7 gave maximal protection in acidic pH and optimal release in alkaline pH. The histopathological studies revealed that the reduction of ulceration is evident from the macroscopic and microscopic studies, which showed complete protection of the tissue morphology with no ulcers, indicating the effectiveness of the microcapsules system against aceclofenac-induced gastric ulceration in rats again. CONCLUSION: Ionotropic gelation seems to be a simple, efficient technique to prepare aceclofenac-loaded microspheres with a reduced risk of gastric ulceration. It is possible to overcome the problem of gastric damage while utilizing aceclofenac by avoiding the exposure of the drug to the ulcer-prone area of the gastrointestinal tract.


Assuntos
Úlcera Gástrica , Alginatos/química , Animais , Cápsulas , Diclofenaco/análogos & derivados , Masculino , Microesferas , Polímeros/química , Ratos , Ratos Wistar , Úlcera Gástrica/induzido quimicamente , Úlcera Gástrica/prevenção & controle
17.
Pharmaceutics ; 14(4)2022 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-35456697

RESUMO

Helicobacter pylori is thought to be the most common cause of peptic and duodenal ulcers. Eradication of this organism is now considered one of the lines of treatment of gastric and duodenal ulcers. This can be achieved via local delivery of antibacterial agents in high concentrations. Accordingly, our objective was to fabricate and evaluate sustained release floating tablets for metronidazole to extend the gastric residence period and control the release rate of metronidazole. Floating tablets containing cellulose derivatives and Avicel were prepared using direct compression. The rate of metronidazole release from the floating tablets (K = 6.278 mg min-1/2) was significantly lower than that from conventional tablets (K = 10.666 mg min-1/2), indicating sustained drug release, according to the Higuchi model, for more than 6 h in an acidic medium of 0.1 N HCl. In vivo study in healthy volunteers revealed significantly improved bioavailability; increased Tmax, AUC, and MRT; and significantly lower absorption rate constant after a single oral dose of 150 mg metronidazole as floating tablets. In addition, the significant increase in MRT indicated an in vivo sustained drug release. The floating tablets provided several benefits, including ease of preparation, absence of effervescent ingredients, and reliance on a pH-independent gel-forming agent to deliver metronidazole in a sustained manner. In conclusion, the prepared tablets could be promising for enhancing both local and systemic metronidazole efficacy.

18.
Pharmaceutics ; 14(3)2022 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-35335893

RESUMO

Oral, quick response, and on demand, also known as a spontaneous oral treatment for erectile dysfunction, is highly needed by both patients and physicians. Vardenafil is selective (fewer side effects) and more effective in difficult-to-treat conditions than sildenafil. This study aims at fostering the dual objectives of using biomolecules such as artificial sweetening agents to solubilize and mask the bitterness of vardenafil loaded on biodegradable polymeric materials (PVA, MC, SA, and PVP K30) to fabricate oral, fast-dissolving films (vardenafil ODFs) in the mouth without the need for water to ingest the dosage form. Furthermore, coprecipitated-dispersed mixtures of vardenafil and three sweeteners (sorbitol, acesulfame K, and sucralose) were prepared and characterized using FTIR, DSC, and solubility studies. Moreover, eight different vardenafil ODFs were prepared using the solvent-casting method. Modified gustatory sensation test, in vitro disintegration, and release studies were performed. In addition, the optimized ODF (F8) was compared with the commercial film-coated tablets pharmacokinetically (relative bioavailability, onset, and duration of actions were estimated). The results indicated that the three sweetening agents had comparable solubilizing capacity. However, both sucralose- and acesulfame K-based ODFs have a more enhanced sweet and palatable taste than sorbitol-sweetened ODF. The SA- and PVP K30-based ODFs showed significantly faster disintegration times and release rates than MC. In conclusion, PVA has good film-forming properties, but a higher ratio of PVA adversely affected the disintegration and release characteristics. The % relative bioavailability for ODF was 126.5%, with a superior absorption rate constant (Ka) of 1.2-fold. The Cmax and estimated Tmax were compared to conventional film-coated tablets.

19.
Pharmaceutics ; 14(11)2022 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-36365104

RESUMO

Curcumin is one of the most researched phytochemicals by pharmacologists and formulation scientists to unleash its potential therapeutic benefits and tackle inherent biopharmaceutic problems. In this study, the native ß-cyclodextrin (CD) and three derivatives, namely, Captisol (sulfobutyl ether ß-CD), hydroxypropyl ß-cyclodextrin, and hydroxyethyl ß-cyclodextrin were investigated for inclusion complexes with curcumin using two preparation methods (physical mixing and solvent evaporation). The prepared complexes were studied for docking, solubility, FTIR, DSC, XRD, and dissolution rates. The best-fitting curcumin: cyclodextrins (the latter of the two CDs) were evaluated for cytotoxicity using human breast cell lines (MCF-7). Dose-dependent cytotoxicity was recorded as IC50% for curcumin, curcumin: hydroxyethyl ß-cyclodextrin, and curcumin: hydroxypropyl ß-cyclodextrin were 7.33, 7.28, and 19.05 µg/mL, respectively. These research findings indicate a protective role for the curcumin: hydroxypropyl ß-cyclodextrin complex on the direct cell lines of MCF-7.

20.
Pharmaceuticals (Basel) ; 15(4)2022 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-35455489

RESUMO

Poor solubility is the major challenge involved in the formulation development of new chemical entities (NCEs), as more than 40% of NCEs are practically insoluble in water. Solid dispersion (SD) is a promising technology for improving dissolution and, thereby, the bioavailability of poorly soluble drugs. This study investigates the influence of a pH-sensitive acrylate polymer, EPO, on the physicochemical properties of rosuvastatin calcium, an antihyperlipidemic drug. In silico docking was conducted with numerous polymers to predict drug polymer miscibility. The screened-out polymer was used to fabricate the binary SD of RoC in variable ratios using the co-grinding and solvent evaporation methods. The prepared formulations were assessed for physiochemical parameters such as saturation solubility, drug content and in vitro drug release. The optimized formulations were further ruled out using solid-state characterization (FTIR, DSC, XRD and SEM) and in vitro cytotoxicity. The results revealed that all SDs profoundly increased solubility as well as drug release. However, the formulation RSE-2, with a remarkable 71.88-fold increase in solubility, presented 92% of drug release in the initial 5 min. The molecular interaction studied using FTIR, XRD, DSC and SEM analysis evidenced the improvement of in vitro dissolution. The enhancement in solubility of RoC may be important for the modulation of the dyslipidemia response. Therefore, pharmacodynamic activity was conducted for optimized formulations. Our findings suggested an ameliorative effect of RSE-2 in dyslipidemia and its associated complications. Moreover, RSE-2 exhibited nonexistence of cytotoxicity against human liver cell lines. Convincingly, this study demonstrates that SD of RoC can be successfully fabricated by EPO, and have all the characteristics that are favourable for superior dissolution and better therapeutic response to the drug.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA