Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 222
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Am J Transplant ; 24(4): 564-576, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37918482

RESUMO

Intestinal transplantation (IT) is the final treatment option for intestinal failure. Static cold storage (CS) is the standard preservation method used for intestinal allografts. However, CS and subsequent transplantation induce ischemia-reperfusion injury (IRI). Severe IRI impairs epithelial barrier function, including loss of intestinal stem cells (ISC), critical to epithelial regeneration. Normothermic machine perfusion (NMP) preservation of kidney and liver allografts minimizes CS-associated IRI; however, it has not been used clinically for IT. We hypothesized that intestine NMP would induce less epithelial injury and better protect the intestine's regenerative ability when compared with CS. Full-length porcine jejunum and ileum were procured, stored at 4 °C, or perfused at 34 °C for 6 hours (T6), and transplanted. Histology was assessed following procurement (T0), T6, and 1 hour after reperfusion. Real-time quantitative reverse transcription polymerase chain reaction, immunofluorescence, and crypt culture measured ISC viability and proliferative potential. A greater number of NMP-preserved intestine recipients survived posttransplant, which correlated with significantly decreased tissue injury following 1-hour reperfusion in NMP compared with CS samples. Additionally, ISC gene expression, spheroid area, and cellular proliferation were significantly increased in NMP-T6 compared with CS-T6 intestine. NMP appears to reduce IRI and improve graft regeneration with improved ISC viability and proliferation.


Assuntos
Transplante de Fígado , Traumatismo por Reperfusão , Suínos , Animais , Transplante de Fígado/métodos , Preservação de Órgãos/métodos , Fígado/patologia , Perfusão/métodos , Traumatismo por Reperfusão/etiologia , Traumatismo por Reperfusão/prevenção & controle , Traumatismo por Reperfusão/patologia , Aloenxertos/patologia , Intestinos
2.
Ann Surg ; 278(5): e912-e921, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37389552

RESUMO

OBJECTIVE: To compare conventional low-temperature storage of transplant donor livers [static cold storage (SCS)] with storage of the organs at physiological body temperature [normothermic machine perfusion (NMP)]. BACKGROUND: The high success rate of liver transplantation is constrained by the shortage of transplantable organs (eg, waiting list mortality >20% in many centers). NMP maintains the liver in a functioning state to improve preservation quality and enable testing of the organ before transplantation. This is of greatest potential value with organs from brain-dead donor organs (DBD) with risk factors (age and comorbidities), and those from donors declared dead by cardiovascular criteria (donation after circulatory death). METHODS: Three hundred eighty-three donor organs were randomized by 15 US liver transplant centers to undergo NMP (n = 192) or SCS (n = 191). Two hundred sixty-six donor livers proceeded to transplantation (NMP: n = 136; SCS: n = 130). The primary endpoint of the study was "early allograft dysfunction" (EAD), a marker of early posttransplant liver injury and function. RESULTS: The difference in the incidence of EAD did not achieve significance, with 20.6% (NMP) versus 23.7% (SCS). Using exploratory, "as-treated" rather than "intent-to-treat," subgroup analyses, there was a greater effect size in donation after circulatory death donor livers (22.8% NMP vs 44.6% SCS) and in organs in the highest risk quartile by donor risk (19.2% NMP vs 33.3% SCS). The incidence of acute cardiovascular decompensation at organ reperfusion, "postreperfusion syndrome," as a secondary outcome was reduced in the NMP arm (5.9% vs 14.6%). CONCLUSIONS: NMP did not lower EAD, perhaps related to the inclusion of lower-risk liver donors, as higher-risk donor livers seemed to benefit more. The technology is safe in standard organ recovery and seems to have the greatest benefit for marginal donors.

3.
Liver Transpl ; 27(3): 425-433, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33188659

RESUMO

Liver grafts from pediatric donors represent a small fraction of grafts transplanted into adult recipients, and their use in adults requires special consideration of donor size to prevent perioperative complications. In the past, graft weight or volume ratios have been adopted from the living donor liver transplant literature to guide clinicians; however, these metrics are not regularly available to surgeons accepting deceased donor organs. In this study, we evaluated all pediatric-to-adult liver transplants in the United Network for Organ Sharing Standard Transplant Analysis and Research database from 1987 to 2019, stratified by donor age and donor-recipient height mismatch ratio (HMR; defined as donor height/recipient height). On multivariable regression controlling for cold ischemia time, age, and transplantation era, the use of donors from ages 0 to 4 and 5 to 9 had increased risk of graft failure (hazard ratio [HR], 1.81 [P < 0.01] and HR, 1.16 [P < 0.01], respectively) compared with donors aged 15 to 17. On Kaplan-Meier survival analysis, a HMR < 0.8 was associated with inferior graft survival (mean, 11.8 versus 14.6 years; log-rank P < 0.001) and inferior patient survival (mean, 13.5 versus 14.9 years; log-rank P < 0.01) when compared with pairs with similar height (HMR, 0.95-1.05; ie, donors within 5% of recipient height). This study demonstrates that both young donor age and low HMR confer additional risk in adult recipients of pediatric liver grafts.


Assuntos
Transplante de Fígado , Obtenção de Tecidos e Órgãos , Adolescente , Adulto , Criança , Sobrevivência de Enxerto , Humanos , Estimativa de Kaplan-Meier , Transplante de Fígado/efeitos adversos , Doadores Vivos , Estudos Retrospectivos , Doadores de Tecidos , Transplantados , Resultado do Tratamento
4.
Arch Biochem Biophys ; 697: 108679, 2021 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-33248947

RESUMO

The pathogenesis and molecular pathways involved in non-alcoholic fatty liver disease (NAFLD) are reviewed, as well as what is known about mitochondrial dysfunction that leads to heart disease and the progression to steatohepatitis and hepatic fibrosis. We focused our discussion on the role of the antioxidant gene heme oxygenase-1 (HO-1) and its nuclear coactivator, peroxisome proliferator-activated receptor-gamma coactivator (PGC1-α) in the regulation of mitochondrial biogenesis and function and potential therapeutic benefit for cardiac disease, NAFLD as well as the pharmacological effect they have on the chronic inflammatory state of obesity. The result is increased mitochondrial function and the conversion of white adipocyte tissue to beige adipose tissue ("browning of white adipose tissue") that leads to an improvement in signaling pathways and overall liver function. Improved mitochondrial biogenesis and function is essential to preventing the progression of hepatic steatosis to NASH and cirrhosis as well as preventing cardiovascular complications.


Assuntos
Heme Oxigenase-1/metabolismo , Hepatopatia Gordurosa não Alcoólica/complicações , Hepatopatia Gordurosa não Alcoólica/fisiopatologia , Animais , Humanos , Hepatopatia Gordurosa não Alcoólica/enzimologia , Hepatopatia Gordurosa não Alcoólica/terapia
5.
J Am Soc Nephrol ; 31(8): 1746-1760, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32587074

RESUMO

BACKGROUND: Oxidative stress in adipocyte plays a central role in the pathogenesis of obesity as well as in the associated cardiovascular complications. The putative uremic toxin indoxyl sulfate induces oxidative stress and dramatically alters adipocyte phenotype in vitro. Mice that have undergone partial nephrectomy serve as an experimental model of uremic cardiomyopathy. This study examined the effects on adipocytes of administering a peptide that reduces oxidative stress to the mouse model. METHODS: A lentivirus vector introduced the peptide NaKtide with an adiponectin promoter into the mouse model of experimental uremic cardiomyopathy, intraperitoneally. Then adipocyte-specific expression of the peptide was assessed for mice fed a standard diet compared with mice fed a western diet enriched in fat and fructose. RESULTS: Partial nephrectomy induced cardiomyopathy and anemia in the mice, introducing oxidant stress and an altered molecular phenotype of adipocytes that increased production of systemic inflammatory cytokines instead of accumulating lipids, within 4 weeks. Consumption of a western diet significantly worsened the adipocyte oxidant stress, but expression of NaKtide in adipocytes completely prevented the worsening. The peptide-carrying lentivirus achieved comparable expression in skeletal muscle, but did not ameliorate the disease phenotype. CONCLUSIONS: Adipocyte-specific expression of NaKtide, introduced with a lentiviral vector, significantly ameliorated adipocyte dysfunction and uremic cardiomyopathy in partially nephrectomized mice. These data suggest that the redox state of adipocytes controls the development of uremic cardiomyopathy in mice subjected to partial nephrectomy. If confirmed in humans, the oxidative state of adipocytes may be a therapeutic target in chronic renal failure.


Assuntos
Adipócitos/metabolismo , Cardiomiopatias/etiologia , Fragmentos de Peptídeos/fisiologia , ATPase Trocadora de Sódio-Potássio/fisiologia , Uremia/complicações , Animais , Apoptose , Modelos Animais de Doenças , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Nefrectomia , Estresse Oxidativo
6.
Ann Surg ; 272(3): 506-510, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32773623

RESUMO

OBJECTIVE: We sought to compare kidney transplantation outcomes between Veterans Affairs (VA) and non-VA transplant centers. SUMMARY BACKGROUND DATA: Transplant care at the VA has previously been scrutinized due to geographic and systematic barriers. The recently instituted MISSION Act entered effect June 6th, 2019, which enables veteran access to surgical care at civilian hospitals if certain eligibility criteria are met. METHODS: We evaluated observed-to-expected outcome ratios (O:E) for graft loss and mortality using the Scientific Registry of Transplant Recipients database for all kidney transplants during a 15-year period (July 1, 2001-June 30, 2016). Of 229,188 kidney transplants performed during the study period, 1508 were performed at VA centers (N = 7), 7750 at the respective academic institutions affiliated with these VA centers, and 227,680 at non-VA centers nationwide (N = 286). RESULTS: Aggregate O:E ratios for mortality were lower in VA centers compared with non-VA centers at 1 month and 1 year (O:E = 0.27 vs 1.00, P = 0.03 and O:E = 0.62 vs 1.00, P = 0.03, respectively). Graft loss at 1 month and 1 year was similar between groups (O:E = 0.65 vs 1.00, P = 0.11 and O:E = 0.79 vs 1.00, P = 0.15, respectively). Ratios for mortality and graft loss were similar between VA centers and their respective academic affiliates. Additionally, a subgroup analysis for graft loss and mortality at 3 years (study period January 1, 2009-December 31, 2013) demonstrated no significant differences between VA centers, VA-affiliates, and all non-VA centers. CONCLUSIONS: Despite low clinical volume, VA centers offer excellent outcomes in kidney transplantation. Veteran referral to civilian hospitals should weigh the benefit of geographic convenience and patient preference with center outcomes.


Assuntos
Previsões , Hospitais de Veteranos/estatística & dados numéricos , Transplante de Rim/estatística & dados numéricos , Complicações Pós-Operatórias/epidemiologia , Sistema de Registros , Transplantados/estatística & dados numéricos , Seguimentos , Hospitais/estatística & dados numéricos , Humanos , Incidência , Estudos Retrospectivos , Taxa de Sobrevida/tendências , Estados Unidos/epidemiologia , United States Department of Veterans Affairs/estatística & dados numéricos
7.
Prostaglandins Other Lipid Mediat ; 150: 106454, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32413571

RESUMO

The global epidemic of cardiovascular disease continues unabated and remains the leading cause of death both in the US and worldwide. We hereby summarize the available therapies for diabetes and cardiovascular disease in diabetics. Clearly, the current approaches to diabetic heart disease often target the manifestations and certain mediators but not the specific pathways leading to myocardial injury, remodeling and dysfunction. Better understanding of the molecular events determining the evolution of diabetic cardiomyopathy will provide insight into the development of specific and targeted therapies. Recent studies largely increased our understanding of the role of enhanced inflammatory response, ROS production, as well as the contribution of Cyp-P450-epoxygenase-derived epoxyeicosatrienoic acid (EET), Peroxisome Proliferator-Activated Receptor Gamma Coactivator-1α (PGC-1α), Heme Oxygenase (HO)-1 and 20-HETE in pathophysiology and therapy of cardiovascular disease. PGC-1α increases production of the HO-1 which has a major role in protecting the heart against oxidative stress, microcirculation and mitochondrial dysfunction. This review describes the potential drugs and their downstream targets, PGC-1α and HO-1, as major loci for developing therapeutic approaches beside diet and lifestyle modification for the treatment and prevention of heart disease associated with obesity and diabetes.


Assuntos
Antioxidantes/farmacologia , Diabetes Mellitus/tratamento farmacológico , Diabetes Mellitus/metabolismo , Cardiomiopatias Diabéticas/tratamento farmacológico , Cardiomiopatias Diabéticas/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Animais , Antioxidantes/uso terapêutico , Diabetes Mellitus/patologia , Cardiomiopatias Diabéticas/patologia , Humanos
8.
J Immunol ; 201(5): 1491-1499, 2018 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-30037847

RESUMO

A link between obesity and periodontitis has been suggested because of compromised immune response and chronic inflammation in obese patients. In this study, we evaluated the anti-inflammatory properties of Kavain, an extract from Piper methysticum, on Porphyromonas gingivalis-induced inflammation in adipocytes with special focus on peroxisome proliferation-activated receptor γ coactivator α (PGC-1α) and related pathways. The 3T3-L1 mouse preadipocytes and primary adipocytes harvested from mouse adipose tissue were infected with P. gingivalis, and inflammation (TNF-α; adiponectin/adipokines), oxidative stress, and adipogenic marker (FAS, CEBPα, and PPAR-γ) expression were measured. Furthermore, effect of PGC-1α knockdown on Kavain action was evaluated. Results showed that P. gingivalis worsens adipocyte dysfunction through increase of TNF-α, IL-6, and iNOS and decrease of PGC-1α and adiponectin. Interestingly, although Kavain obliterated P. gingivalis-induced proinflammatory effects in wild-type cells, Kavain did not affect PGC-1α-deficient cells, strongly advocating for Kavain effects being mediated by PGC-1α. In vivo adipocytes challenged with i.p. injection of P. gingivalis alone or P. gingivalis and Kavain displayed the same phenotype as in vitro adipocytes. Altogether, our findings established anti-inflammatory and antioxidant effects of Kavain on adipocytes and emphasized protective action against P. gingivalis-induced adipogenesis. The use of compounds such as Kavain offer a portal to potential therapeutic approaches to counter chronic inflammation in obesity-related diseases.


Assuntos
Adipócitos/imunologia , Infecções por Bacteroidaceae/tratamento farmacológico , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/imunologia , Porphyromonas gingivalis/imunologia , Pironas/farmacologia , Transdução de Sinais/efeitos dos fármacos , Células 3T3-L1 , Adipócitos/microbiologia , Adipócitos/patologia , Animais , Infecções por Bacteroidaceae/genética , Infecções por Bacteroidaceae/imunologia , Infecções por Bacteroidaceae/patologia , Citocinas/genética , Citocinas/imunologia , Técnicas de Silenciamento de Genes , Inflamação/tratamento farmacológico , Inflamação/genética , Inflamação/imunologia , Inflamação/patologia , Camundongos , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/genética , Porphyromonas gingivalis/patogenicidade , Transdução de Sinais/genética , Transdução de Sinais/imunologia
9.
Exp Cell Res ; 380(2): 180-187, 2019 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-31039348

RESUMO

BACKGROUND: Non-alcoholic fatty liver disease (NAFLD) is associated with obesity and is considered to be an inflammatory disorder characterized by fatty acid accumulation, oxidative stress, and lipotoxicity. We have previously reported that epoxyeicosatrienoic acid-agonist (EET-A) has multiple beneficial effects on cardiac, renal and adipose tissue function while exhibiting both anti-inflammatory and anti-oxidant activities. We hypothesized that EET-A intervention would play a central role in attenuation of obesity-induced steatosis and hepatic fibrosis that leads to NAFLD. METHODS: We studied the effect of EET-A on fatty liver using db/db mice as a model of obesity. Mice were fed a high fat diet (HFD) for 16 weeks and administered EET-A twice weekly for the final 8 weeks. RESULTS: db/db mice fed HFD significantly increased hepatic lipid accumulation as manifested by increases in NAS scores, hepatic fibrosis, insulin resistance, and inflammation, and decreases in mitochondrial mitofusin proteins (Mfn 1/2) and anti-obesity genes Fibroblast growth factor 21 (FGF21) and Cellular Repressor of E1A-Stimulated Genes 1 (CREG1). EET-A administration reversed the decrease in these genes and reduced liver fibrosis. Knockout of Peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α) in EET-A treated mice resulted in a reversal of the beneficial effects of EET-A administration. CONCLUSIONS: EET-A intervention diminishes fatty acid accumulation, fibrosis, and NFALD associated with an increase in HO-1-PGC1α and increased insulin receptor phosphorylation. A pharmacological strategy involving EETs may offer a potential therapeutic approach in preventing fibrosis, mitochondrial dysfunction, and the development of NAFLD.


Assuntos
Ácido 8,11,14-Eicosatrienoico/análogos & derivados , Heme Oxigenase-1/metabolismo , Mitocôndrias/efeitos dos fármacos , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Receptores para Leptina/deficiência , Transdução de Sinais/efeitos dos fármacos , Ácido 8,11,14-Eicosatrienoico/farmacologia , Animais , Modelos Animais de Doenças , Fígado Gorduroso/tratamento farmacológico , Fígado Gorduroso/metabolismo , Camundongos , Mitocôndrias/metabolismo , Hepatopatia Gordurosa não Alcoólica/metabolismo , Receptores para Leptina/metabolismo
10.
Int J Mol Sci ; 21(16)2020 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-32824688

RESUMO

(1) Background: Recently we have noted that adipocyte specific expression of the peptide, NaKtide, which was developed to attenuate the Na,K-ATPase oxidant amplification loop, could ameliorate the phenotypical features of uremic cardiomyopathy. We performed this study to better characterize the cellular transcriptomes that are involved in various biological pathways associated with adipocyte function occurring with renal failure. (2) Methods: RNAseq was performed on the visceral adipose tissue of animals subjected to partial nephrectomy. Specific expression of NaKtide in adipocytes was achieved using an adiponectin promoter. To better understand the cause of gene expression changes in vivo, 3T3L1 adipocytes were exposed to indoxyl sulfate (IS) or oxidized low density lipoprotein (oxLDL), with and without pNaKtide (the cell permeant form of NaKtide). RNAseq was also performed on these samples. (3) Results: We noted a large number of adipocyte genes were altered in experimental renal failure. Adipocyte specific NaKtide expression reversed most of these abnormalities. High correlation with some cardiac specific phenotypical features was noted amongst groups of these genes. In the murine adipocytes, both IS and oxLDL induced similar pathway changes as were noted in vivo, and pNaKtide appeared to reverse these changes. Network analysis demonstrated tremendous similarities between the network revealed by gene expression analysis with IS compared with oxLDL, and the combined in vitro dataset was noted to also have considerable similarity to that seen in vivo with experimental renal failure. (4) Conclusions: This study suggests that the myriad of phenotypical features seen with experimental renal failure may be fundamentally linked to oxidant stress within adipocytes.


Assuntos
Adipócitos/metabolismo , Estresse Oxidativo , Fragmentos de Peptídeos/metabolismo , ATPase Trocadora de Sódio-Potássio/metabolismo , Transcriptoma , Células 3T3 , Animais , Redes Reguladoras de Genes , Indicã/metabolismo , Lipoproteínas LDL/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fragmentos de Peptídeos/genética , ATPase Trocadora de Sódio-Potássio/genética
11.
Int J Mol Sci ; 21(15)2020 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-32751794

RESUMO

AIM: Obesity is associated with metabolic syndrome, hypertension, dyslipidemia, nonalcoholic fatty liver disease (NAFLD), and type 2 diabetes. In this study, we investigated whether the dietary supplementation of pomegranate seed oil (PSO) exerted a protective effect on liver lipid uptake, fibrosis, and mitochondrial function in a mouse model of obesity and insulin resistance. METHOD: In this in vivo study, eight-week-old C57BL/6J male mice were fed with a high fat diet (HFD) for 24 weeks and then were divided into three groups as follows: group (1) Lean; group (n = 6) (2) HF diet; group (n = 6) (3) HF diet treated with PSO (40 mL/kg food) (n = 6) for eight additional weeks starting at 24 weeks. Physiological parameters, lipid droplet accumulation, inflammatory biomarkers, antioxidant biomarkers, mitochondrial biogenesis, insulin sensitivity, and hepatic fibrosis were determined to examine whether PSO intervention prevents obesity-associated metabolic syndrome. RESULTS: The PSO group displayed an increase in oxygen consumption, as well as a decrease in fasting glucose and blood pressure (p < 0.05) when compared to the HFD-fed mice group. PSO increased both the activity and expression of hepatic HO-1, downregulated inflammatory adipokines, and decreased hepatic fibrosis. PSO increased the levels of thermogenic genes, mitochondrial signaling, and lipid metabolism through increases in Mfn2, OPA-1, PRDM 16, and PGC1α. Furthermore, PSO upregulated obesity-mediated hepatic insulin receptor phosphorylation Tyr-972, p-IRB tyr1146, and pAMPK, thereby decreasing insulin resistance. CONCLUSIONS: These results indicated that PSO decreased obesity-mediated insulin resistance and the progression of hepatic fibrosis through an improved liver signaling, as manifested by increased insulin receptor phosphorylation and thermogenic genes. Furthermore, our findings indicate a potential therapeutic role for PSO in the prevention of obesity-associated NAFLD, NASH, and other metabolic disorders.


Assuntos
Antioxidantes/uso terapêutico , Pressão Sanguínea/efeitos dos fármacos , Metabolismo dos Lipídeos/efeitos dos fármacos , Cirrose Hepática/tratamento farmacológico , Mitocôndrias/efeitos dos fármacos , Obesidade/tratamento farmacológico , Óleos de Plantas/uso terapêutico , Animais , Resistência à Insulina , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Obesos , Mitocôndrias/patologia , Punica granatum/química , Sementes/química
12.
Arch Biochem Biophys ; 673: 108073, 2019 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-31425676

RESUMO

In this review we examine the effects of both over- and under-production of heme oxygenase-1 (HO-1) and HO activity on a broad spectrum of biological systems and on vascular disease. In a few instances e.g., neonatal jaundice, overproduction of HO-1 and increased HO activity results in elevated levels of bilirubin requiring clinical intervention with inhibitors of HO activity. In contrast HO-1 levels and HO activity are low in obesity and the HO system responds to mitigate the deleterious effects of oxidative stress through increased levels of bilirubin (anti-inflammatory) and CO (anti-apoptotic) and decreased levels of heme (pro-oxidant). Site specific HO-1 overexpression diminishes adipocyte terminal differentiation and lipid accumulation of obesity mediated release of inflammatory molecules. A series of diverse strategies have been implemented that focus on increasing HO-1 and HO activity that are central to reversing the clinical complications associated with diseases including, obesity, metabolic syndrome and vascular disease.


Assuntos
Regulação Enzimológica da Expressão Gênica , Heme Oxigenase-1/metabolismo , Animais , Doença , Heme/metabolismo , Heme Oxigenase-1/genética , Humanos , Transdução de Sinais
13.
Exp Cell Res ; 373(1-2): 112-118, 2018 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-30359575

RESUMO

Type 2 diabetes mellitus (DM2) follows impaired glucose tolerance in obesity and is frequently associated with hypertension, causing adverse myocardial remodelling and leading to heart failure. The DNA bound protein PARP (poly ADP ribose) polymerase catalyses a post translational modification (polymerization of negatively charged ADP-ribose chains) of nuclear proteins. PARP-1 activation is NAD+ dependent and takes part in DNA repair and in chromatin remodelling and has a function in transcriptional regulation, intracellular trafficking and energy metabolism. PARP-1 is activated in diabetic cardiomyopathy. We hypothesized that PARP-1 inhibition in diabetic mice may protect cardiomyocytes from inflammation and ROS production. METHODS: Obese Leptin resistant (db/db) mice suffering from DM2, were treated with angiotensin II (AT) for 4 weeks to enhance the development of cardiomyopathy. Mice were concomitantly treated with the PARP-1 inhibitor INO1001. Neonatal cardiomyocytes exposed to high levels of glucose (33 mM) with or without AT were treated with INO1001. or with SIRT inhibitor (EX-527) in the presence of INO1001 were tested in-vitro. RESULTS: The in-vivo tests show that hearts from AT treated DM2 mice exhibited cardiac hypertrophy, fibrosis and an increase in the inflammatory marker TNFα. DM2 mice had an increased oxidative stress, concomitant with elevated PARP-1 activity and reduced Sirtuin-1 (SIRT1) expression. PARP-1 inhibition led to increased SIRT1 and Peroxisome proliferator-activated receptor gamma coactivator 1-α (PGC-1α) levels, attenuating oxidative stress, inflammation and fibrosis. In-vitro experiments demonstrated that inhibition of PARP-1 in cardiomyocytes exposed to high levels of glucose and AT led to a significant reduction in ROS (P < 0.01), which was abolished in the presence of the SIRT1 inhibitor together with increased protein expression of SIRT1 and PGC-1α. CONCLUSION: PARP1 inhibitor INO1001 attenuated cardiomyopathic features in diabetic mice through the activation of SIRT1 and its downstream antioxidant defence mechanisms. The results of this study suggest a pivotal role of PARP-1 inhibition in treating diabetic and AT-induced cardiomyopathy.


Assuntos
Cardiomiopatias Diabéticas/tratamento farmacológico , Inibidores Enzimáticos/uso terapêutico , Indóis/uso terapêutico , Poli(ADP-Ribose) Polimerase-1/antagonistas & inibidores , Animais , Células Cultivadas , Cardiomiopatias Diabéticas/enzimologia , Cardiomiopatias Diabéticas/patologia , Glucose/toxicidade , Coração/efeitos dos fármacos , Hipertensão/tratamento farmacológico , Inflamação/tratamento farmacológico , Masculino , Camundongos , Miocárdio/patologia , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/enzimologia , Tamanho do Órgão/efeitos dos fármacos , Estresse Oxidativo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Ratos Sprague-Dawley , Sirtuína 1/metabolismo
14.
Int J Mol Sci ; 20(10)2019 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-31121826

RESUMO

OBJECTIVE: Heme oxygenase (HO-1) plays a critical role in adipogenesis and it is important to understand its function in obesity. Many studies have shown that upregulation of HO-1 can affect the biologic parameters in obesity-mediated diabetes, hypertension and vascular endothelial cell function. Thus, we aimed to explore the hypothesis that upregulation of HO-1, using a pharmacologic approach as well as gene targeting, would improve both adiposity and endothelial cell dysfunction by direct targeting of endothelial cells. Our second aim was to compare the short-term effect of a HO-1 inducer, cobalt-protoporphrin IX (CoPP), with the long-term effects of gene targeted therapy on vascular and adipocyte stem cells in obese mice. METHOD: We examined the effect of CoPP on fat pre-adipocytes and mesenchymal stem cells (MSC) in mice fed a high-fat diet (HFD). We also used a lentiviral construct that expressed heme oxygenase (HO-1) that was under the control of an endothelium specific promoter, vascular endothelium cadherin (VECAD) heme oxygenase (VECAD-HO-1). We targeted endothelial cells using vascular endothelium cadherin/green fluorescent protein fusion construct (VECAD-GFP) as the control. Conditioned media (CM) from endothelial cells (EC) was added to fat derived adipocytes. Additionally, we treated renal interlobar arteries with phenylephrine and dosed cumulative increments of acetylcholine both with and without exposure to CoPP. We did the same vascular reactivity experiments with VECAD-HO-1 lentiviral construct compared to the control. RESULTS: CoPP improved vascular reactivity and decreased adipogenesis compared to the control. MSCs exposed to CM from EC transfected with VECAD-HO-1 showed decreased adipogenesis, smaller lipid droplet size and decreased PPAR-γ, C/EBP and increased Wnt 10b compared to the control. HO-1 upregulation had a direct effect on reducing adipogenesis. This effect was blocked by tin mesoporphrin (SnMP). EC treated with VECAD-HO-1 expressed lower levels of ICAM and VCAM compared to the control, suggesting improved EC function. This also improved ACH induced vascular reactivity. These effects were also reversed by SnMP. The effect of viral transfection was much more specific and sustained than the effects of pharmacologic therapy, CoPP. CONCLUSION: This study demonstrates that a pharmacological inducer of HO-1 such as CoPP improves endothelial cell function while dampening adipogenesis, but long-term HO-1 expression by direct targeting of endothelial cells by gene transfer therapy may offer a more specific and ideal solution. This was evidenced by smaller healthier adipocytes that had improved insulin sensitivity, suggesting increased adiponectin levels. HO-1 upregulation reestablished the "crosstalk" between perivascular adipose tissue and the vascular system that was lost in the chronic inflammatory state of obesity. This study demonstrates that gene targeting of EC may well be the future direction in treating obesity induced EC dysfunction, with the finding that targeting the vasculature had a direct and sustained effect on adipogenesis.


Assuntos
Adiposidade , Heme Oxigenase-1/genética , Obesidade/genética , Obesidade/terapia , Adiposidade/efeitos dos fármacos , Animais , Linhagem Celular , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Ativadores de Enzimas/uso terapêutico , Marcação de Genes , Terapia Genética , Masculino , Camundongos Endogâmicos C57BL , Obesidade/patologia , Obesidade/fisiopatologia , Pirazinas/uso terapêutico , Pirróis/uso terapêutico , Regulação para Cima/efeitos dos fármacos , Vasodilatação/efeitos dos fármacos
15.
Int J Mol Sci ; 20(13)2019 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-31261892

RESUMO

BACKGROUND: Angiotensin II (Ang II), released by the renin-angiotensin-aldosterone system (RAAS), contributes to the modulatory role of the RAAS in adipose tissue dysfunction. Investigators have shown that inhibition of AngII improved adipose tissue function and insulin resistance in mice with metabolic syndrome. Heme Oxygenase-1 (HO-1), a potent antioxidant, has been demonstrated to improve oxidative stress and adipocyte phenotype. Molecular effects of high oxidative stress include suppression of sirtuin-1 (SIRT1), which is amenable to redox manipulations. The mechanisms involved, however, in these metabolic effects of the RAAS remain incompletely understood. HYPOTHESIS: We hypothesize that AngII-induced oxidative stress has the potential to suppress adipocyte SIRT1 via down regulation of HO-1. This effect of AngII will, in turn, upregulate mineralocorticoid receptor (MR). The induction of HO-1 will rescue SIRT1, hence improving oxidative stress and adipocyte phenotype. METHODS AND RESULTS: We examined the effect of AngII on lipid accumulation, oxidative stress, and inflammatory cytokines in mouse pre-adipocytes in the presence and absence of cobalt protoporphyrin (CoPP), HO-1 inducer, tin mesoporphyrin (SnMP), and HO-1 inhibitor. Our results show that treatment of mouse pre-adipocytes with AngII increased lipid accumulation, superoxide levels, inflammatory cytokine levels, interleukin-6 (IL-6) and tumor necrosis factor α (TNFα), and adiponectin levels. This effect was attenuated by HO-1 induction, which was further reversed by SnMP, suggesting HO-1 mediated improvement in adipocyte phenotype. AngII-treated pre-adipocytes also showed upregulated levels of MR and suppressed SIRT1 that was rescued by HO-1. Subsequent treatment with CoPP and SIRT1 siRNA in mouse pre-adipocytes increased lipid accumulation and fatty acid synthase (FAS) levels, suggesting that beneficial effects of HO-1 are mediated via SIRT1. CONCLUSION: Our study demonstrates for the first time that HO-1 has the ability to restore cellular redox, rescue SIRT1, and prevent AngII-induced impaired effects on adipocytes and the systemic metabolic profile.


Assuntos
Adipócitos/metabolismo , Angiotensina II/farmacologia , Heme Oxigenase (Desciclizante)/metabolismo , Estresse Oxidativo , Sirtuína 1/metabolismo , Células 3T3-L1 , Adipócitos/efeitos dos fármacos , Animais , Citocinas/metabolismo , Ácido Graxo Sintases/metabolismo , Heme Oxigenase (Desciclizante)/antagonistas & inibidores , Metabolismo dos Lipídeos , Camundongos , Receptores de Mineralocorticoides/metabolismo
16.
PLoS Pathog ; 12(12): e1006084, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27973608

RESUMO

Iron is an essential nutrient for bacterial pathogenesis, but in the host, iron is tightly sequestered, limiting its availability for bacterial growth. Although this is an important arm of host immunity, most studies examine how bacteria respond to iron restriction in laboratory rather than host settings, where the microbiome can potentially alter pathogen strategies for acquiring iron. One of the most important transcriptional regulators controlling bacterial iron homeostasis is Fur. Here we used a combination of RNA-seq and chromatin immunoprecipitation (ChIP)-seq to characterize the iron-restricted and Fur regulons of the biofilm-forming opportunistic pathogen Aggregatibacter actinomycetemcomitans. We discovered that iron restriction and Fur regulate 4% and 3.5% of the genome, respectively. While most genes in these regulons were related to iron uptake and metabolism, we found that Fur also directly regulates the biofilm-dispersing enzyme Dispersin B, allowing A. actinomycetemcomitans to escape from iron-scarce environments. We then leveraged these datasets to assess the availability of iron to A. actinomycetemcomitans in its primary infection sites, abscesses and the oral cavity. We found that A. actinomycetemcomitans is not restricted for iron in a murine abscess mono-infection, but becomes restricted for iron upon co-infection with the oral commensal Streptococcus gordonii. Furthermore, in the transition from health to disease in human gum infection, A. actinomycetemcomitans also becomes restricted for iron. These results suggest that host iron availability is heterogeneous and dependent on the infecting bacterial community.


Assuntos
Proteínas de Bactérias/metabolismo , Coinfecção/metabolismo , Ferro/metabolismo , Infecções por Pasteurellaceae/metabolismo , Periodontite/microbiologia , Proteínas Repressoras/metabolismo , Animais , Biofilmes/crescimento & desenvolvimento , Coinfecção/microbiologia , Modelos Animais de Doenças , Humanos , Imunoprecipitação , Camundongos , Análise de Sequência com Séries de Oligonucleotídeos , Infecções por Pasteurellaceae/microbiologia , Análise de Componente Principal , Infecções Estreptocócicas/microbiologia , Streptococcus gordonii
17.
Am J Physiol Regul Integr Comp Physiol ; 315(5): R934-R944, 2018 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-30088983

RESUMO

20-Hydroxyeicosatetraenoic acid (20-HETE) has been shown to positively correlate with body mass index, hyperglycemia, and plasma insulin levels. This study seeks to identify a causal relationship between 20-HETE and obesity-driven insulin resistance. Cyp4a14-/- male mice, a model of 20-HETE overproduction, were fed a regular or high-fat diet (HFD) for 15 wk. 20-SOLA [2,5,8,11,14,17-hexaoxanonadecan-19-yl 20-hydroxyeicosa-6( Z),15( Z)-dienoate], a 20-HETE antagonist, was administered from week 0 or week 7 of HFD. HFD-fed mice gained significant weight (16.7 ± 3.2 vs. 3.8 ± 0.35 g, P < 0.05) and developed hyperglycemia (157 ± 3 vs. 121 ± 7 mg/dl, P < 0.05) and hyperinsulinemia (2.3 ± 0.4 vs. 0.5 ± 0.1 ng/ml, P < 0.05) compared with regular diet-fed mice. 20-SOLA attenuated HFD-induced weight gain (9.4 ± 1 vs. 16.7 ± 3 g, P < 0.05) and normalized the hyperglycemia (157 ± 7 vs. 102 ± 5 mg/dl, P < 0.05) and hyperinsulinemia (1.1 ± 0.1 vs. 2.3 ± 0.4 ng/ml, P < 0.05). The impaired glucose homeostasis and insulin resistance in HFD-fed mice evidenced by reduced insulin and glucose tolerance were also ameliorated by 20-SOLA. Circulatory and adipose tissue 20-HETE levels significantly increased in HFD-fed mice correlating with impaired insulin signaling, including reduction in insulin receptor tyrosine (Y972) phosphorylation and increased serine (S307) phosphorylation of the insulin receptor substrate-1 (IRS-1). 20-SOLA treatments prevented changes in insulin signaling. These findings indicate that 20-HETE contributes to HFD-induced obesity, insulin resistance, and impaired insulin signaling.


Assuntos
Dieta Hiperlipídica/efeitos adversos , Ácidos Hidroxieicosatetraenoicos/metabolismo , Resistência à Insulina/fisiologia , Obesidade/induzido quimicamente , Animais , Glicemia/efeitos dos fármacos , Peso Corporal/efeitos dos fármacos , Peso Corporal/fisiologia , Gorduras na Dieta/efeitos adversos , Hiperglicemia/tratamento farmacológico , Hiperglicemia/metabolismo , Masculino , Camundongos Knockout , Obesidade/fisiopatologia
18.
Cardiovasc Diabetol ; 17(1): 115, 2018 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-30119667

RESUMO

Unfortunately, after publication of this article [1], it was noticed that Table 1 contained errors introduced during the production process. In the WT + AT column, the FS value is 21 ± 7 and the Body Weight value is 25 ± 2. In the WT + AT + CR column, the FS value is 46 ± 14 and the Body Weight value is 19 ± 1. The original article has been updated to reflect this.

19.
Cardiovasc Diabetol ; 17(1): 111, 2018 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-30071860

RESUMO

BACKGROUND: Metabolic disorders such as obesity, insulin resistance and type 2 diabetes mellitus (DM2) are all linked to diabetic cardiomyopathy that lead to heart failure. Cardiomyopathy is initially characterized by cardiomyocyte hypertrophy, followed by mitochondrial dysfunction and fibrosis, both of which are aggravated by angiotensin. Caloric restriction (CR) is cardioprotective in animal models of heart disease through its catabolic activity and activation of the expression of adaptive genes. We hypothesized that in the diabetic heart; this effect involves antioxidant defenses and is mediated by SIRT1 and the transcriptional coactivator PGC-1α (Peroxisome proliferator-activated receptor-γ coactivator). METHODS: Obese Leptin resistant (db/db) mice characterized by DM2 were treated with angiotensin II (AT) for 4 weeks to enhance the development of cardiomyopathy. Mice were concomitantly either on a CR diet or fed ad libitum. Cardiomyocytes were exposed to high levels of glucose and were treated with EX-527 (SIRT1 inhibitor). Cardiac structure and function, gene and protein expression and oxidative stress parameters were analyzed. RESULTS: AT treated db/db mice developed cardiomyopathy manifested by elevated levels of serum glucose, cholesterol and cardiac hypertrophy. Leukocyte infiltration, fibrosis and an increase in an inflammatory marker (TNFα) and natriuretic peptides (ANP, BNP) gene expression were also observed. Oxidative stress was manifested by low SOD and PGC-1α levels and an increase in ROS and MDA. DM2 resulted in ERK1/2 activation. CR attenuated all these deleterious perturbations and prevented the development of cardiomyopathy. ERK1/2 phosphorylation was reduced in CR mice (p = 0.008). Concomitantly CR prevented the reduction in SIRT activity and PGC-1α (p < 0.04). Inhibition of SIRT1 activity in cardiomyocytes led to a marked reduction in both SIRT1 and PGC-1α. ROS levels were significantly (p < 0.03) increased by glucose and SIRT1 inhibition. CONCLUSION: In the current study we present evidence of the cardioprotective effects of CR operating through SIRT1 and PGC-1 α, thereby decreasing oxidative stress, fibrosis and inflammation. Our results suggest that increasing SIRT1 and PGC-1α levels offer new therapeutic approaches for the protection of the diabetic heart.


Assuntos
Restrição Calórica , Diabetes Mellitus Tipo 2/dietoterapia , Cardiomiopatias Diabéticas/prevenção & controle , Miocárdio/enzimologia , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Sirtuína 1/metabolismo , Angiotensina II , Animais , Células Cultivadas , Diabetes Mellitus Tipo 2/enzimologia , Diabetes Mellitus Tipo 2/etiologia , Diabetes Mellitus Tipo 2/fisiopatologia , Cardiomiopatias Diabéticas/enzimologia , Cardiomiopatias Diabéticas/etiologia , Cardiomiopatias Diabéticas/fisiopatologia , Modelos Animais de Doenças , Fibrose , Hipertensão/induzido quimicamente , Masculino , Camundongos Endogâmicos C57BL , Miocárdio/patologia , Obesidade/complicações , Estresse Oxidativo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/genética , Ratos Sprague-Dawley , Transdução de Sinais , Remodelação Ventricular
20.
Artigo em Inglês | MEDLINE | ID: mdl-30041041

RESUMO

We have shown that epoxyeicosatrienoic acids (EETs), specifically 11,12- and 14,15-EETs, reduce adipogenesis in human mesenchymal stem cells and mouse preadipocytes (3T-3L1). In this study, we explore the effects of soluble epoxide hydrolase (sEH) deletion on various aspects of adipocyte-function, including programing for white vs. beige-like fat, and mitochondrial and thermogenic gene-expressions. We further hypothesize that EETs and heme-oxygenase 1 (HO-1) form a synergistic, functional module whose effects on adipocyte and vascular function is greater than the effects of sEH deletion alone. In in vitro studies, we examined the effect of sEH inhibitors on MSC-derived adipocytes. MSC-derived adipocytes exposed to AUDA, an inhibitor of sEH, exhibit an increased number of small and healthy adipocytes, an effect reproduced by siRNA for sEH. in vivo studies indicate that sEH deletion results in a significant decrease in adipocyte size, inflammatory adipokines NOV, TNFα, while increasing adiponectin (p < 0.05). These findings are associated with a decrease in body weight (p < 0.05), and visceral fat (p < 0.05). Importantly, sEH deletion was associated with a significant increase in Mfn1, COX 1, UCP1 and adiponectin (p < 0.03). sEH deletion was manifested by a significant increase in EETs isomers 5,6-EET, 8,9-EET, 11,12-EET, and 14,15-EET and an increased EETs/DHETEs ratio. Notably, activation of HO-1 gene expression further increased the levels of EETs, suggesting that the antioxidant HO-1 system protects EETs from degradation by ROS. These results are novel in that sEH deletion, while increasing EET levels, resulted in reprograming of white fat to express mitochondrial and thermogenic genes, a phenotype characteristic of beige-fat. Thus, EETs agonist(s) and sEH inhibitors may have therapeutic potential in the treatment of metabolic syndrome and obesity.


Assuntos
Adiponectina/metabolismo , Tecido Adiposo Bege/metabolismo , Tecido Adiposo Branco/metabolismo , Epóxido Hidrolases/metabolismo , Heme Oxigenase-1/metabolismo , Mitocôndrias/metabolismo , Células 3T3-L1 , Ácido 8,11,14-Eicosatrienoico/análogos & derivados , Ácido 8,11,14-Eicosatrienoico/farmacologia , Adipócitos/citologia , Adipócitos/efeitos dos fármacos , Adipócitos/metabolismo , Animais , Células Cultivadas , Epóxido Hidrolases/genética , Expressão Gênica/efeitos dos fármacos , Heme Oxigenase-1/genética , Humanos , Células-Tronco Mesenquimais/citologia , Camundongos , Camundongos Knockout , Interferência de RNA , Solubilidade , Vasodilatadores/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA