Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
FASEB J ; 33(8): 9489-9504, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31125275

RESUMO

NK cells have an important role in immunosurveillance of multiple myeloma (MM) progression, and their activity is enhanced by combination therapies able to regulate the expression of specific activating ligands. Liver X receptors (LXRs) are nuclear receptors and important regulators of intracellular cholesterol and lipid homeostasis. Moreover, they have regulatory roles in both cancer and immune response. Indeed, they can regulate inflammation and innate and acquired immunity. Furthermore, LXR activation directly acts in cancer cells (e.g., prostate, breast, melanoma, colon cancer, hepatocarcinoma, glioblastoma, and MM) that show an accumulation of cholesterol and alteration of LXR-mediated metabolic pathways. Here, we investigated the role of LXR and cholesterol on the expression of the NK cell-activating ligands major histocompatibility complex class I chain-related molecule A and B (MICA and MICB) in MM cells. The results shown in this work indicate that MM cells are responsive to LXR activation, which induces changes in the intracellular cholesterol content. These changes correlate with an enhanced expression of MICA and MICB in human MM cell lines and in primary malignant plasma cells, 2 ligands of the NK group 2D receptor (NKG2D)/CD314 activating receptor expressed in cytotoxic lymphocytes, rendering MM cells more sensitive to recognition, degranulation, and killing by NK cells. Mechanistically, we observed that LXR activation regulates MICA and MICB expression at different levels: MICA at the transcriptional level, enhancing mica promoter activity, and MICB by inhibiting its degradation in lysosomes. The present study provides evidence that activation of LXR, by enhancing NKG2D ligand expression, can promote NK cell-mediated cytotoxicity and suggests a novel immune-mediated mechanism involving modulation of intracellular cholesterol levels in cancer cells.-Bilotta, M. T., Abruzzese, M. P., Molfetta, R., Scarno, G., Fionda, C., Zingoni, A., Soriani, A., Garofalo, T., Petrucci, M. T., Ricciardi, M. R., Paolini, R., Santoni, A., Cippitelli, M. Activation of liver X receptor up-regulates the expression of the NKG2D ligands MICA and MICB in multiple myeloma through different molecular mechanisms.


Assuntos
Antígenos de Histocompatibilidade Classe I/metabolismo , Receptores X do Fígado/metabolismo , Mieloma Múltiplo/metabolismo , Imunidade Adaptativa/fisiologia , Apoptose/genética , Apoptose/fisiologia , Linhagem Celular , Células Cultivadas , Cromatografia em Camada Fina , Citometria de Fluxo , Regulação Neoplásica da Expressão Gênica , Antígenos de Histocompatibilidade Classe I/genética , Humanos , Imunidade Inata/fisiologia , Inflamação/metabolismo , Células Matadoras Naturais/metabolismo , Receptores X do Fígado/genética , Microscopia Confocal , Mieloma Múltiplo/genética , Regiões Promotoras Genéticas/genética
2.
BMC Cancer ; 15: 17, 2015 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-25609078

RESUMO

BACKGROUND: DNAX accessory molecule-1 (DNAM-1) is an activating receptor constitutively expressed by macrophages/dendritic cells and by T lymphocytes and Natural Killer (NK) cells, having an important role in anticancer responses; in this regard, combination therapies able to enhance the expression of DNAM-1 ligands on tumor cells are of therapeutic interest. In this study, we investigated the effect of different nitric oxide (NO) donors on the expression of the DNAM-1 ligand Poliovirus Receptor/CD155 (PVR/CD155) in multiple myeloma (MM) cells. METHODS: Six MM cell lines, SKO-007(J3), U266, OPM-2, RPMI-8226, ARK and LP1 were used to investigate the activity of different nitric oxide donors [DETA-NO and the NO-releasing prodrugs NCX4040 (NO-aspirin) and JS-K] on the expression of PVR/CD155, using Flow Cytometry and Real-Time PCR. Western-blot and specific inhibitors were employed to investigate the role of soluble guanylyl cyclase/cGMP and activation of the DNA damage response (DDR). RESULTS: Our results indicate that increased levels of nitric oxide can upregulate PVR/CD155 cell surface and mRNA expression in MM cells; in addition, exposure to nitric oxide donors renders myeloma cells more efficient to activate NK cell degranulation and enhances their ability to trigger NK cell-mediated cytotoxicity. We found that activation of the soluble guanylyl cyclase and increased cGMP concentrations by nitric oxide is not involved in the up-regulation of ligand expression. On the contrary, treatment of MM cells with nitric oxide donors correlated with the activation of a DNA damage response pathway and inhibition of the ATM /ATR/Chk1/2 kinase activities by specific inhibitors significantly abrogates up-regulation. CONCLUSIONS: The present study provides evidence that regulation of the PVR/CD155 DNAM-1 ligand expression by nitric oxide may represent an additional immune-mediated mechanism and supports the anti-myeloma activity of nitric oxide donors.


Assuntos
Antígenos de Diferenciação de Linfócitos T/biossíntese , Mieloma Múltiplo/metabolismo , Óxido Nítrico/metabolismo , Receptores Virais/biossíntese , Antígenos de Diferenciação de Linfócitos T/genética , Aspirina/administração & dosagem , Aspirina/análogos & derivados , Linhagem Celular Tumoral , Dano ao DNA/efeitos dos fármacos , Dano ao DNA/genética , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Ligantes , Mieloma Múltiplo/tratamento farmacológico , Mieloma Múltiplo/genética , Nitrocompostos/administração & dosagem , Receptores Virais/genética , Triazenos/administração & dosagem
3.
EBioMedicine ; 97: 104849, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37898095

RESUMO

BACKGROUND: Paediatric Huntington disease with highly expanded mutations (HE-PHD; >80 CAG repeats) presents atypically, compared to adult-onset Huntington disease (AOHD), with neurodevelopmental delay, epilepsy, abnormal brain glucose metabolism, early striatal damage, and reduced lifespan. Since genetic GLUT-1 deficiency syndrome shows a symptom spectrum similar to HE-PHD, we investigated the potential role of the two main glucose transporters, GLUT-1 and GLUT-3, in HE-PHD. METHODS: We compared GLUT-1 and GLUT-3 protein expression in HE-PHD, juvenile-onset (JOHD), and AOHD brains (n = 2; n = 3; n = 6) and periphery (n = 3; n = 2; n = 2) versus healthy adult controls (n = 6; n = 6). We also investigated mitochondrial complexes and hexokinase-II protein expression. FINDINGS: GLUT-1 and GLUT-3 expression were significantly lower in HE-PHD frontal cortex (p = 0.009, 95% [CI 13.4, 14.7]; p = 0.017, 95% [CI 14.2, 14.5]) versus controls. In fibroblasts, GLUT-1 and GLUT-3 expression were lower compared to controls (p < 0.0001, 95% [CI 0.91, 1.09]; p = 0.046, 95% [CI 0.93, 1.07]). In the frontal cortex, this occurred without evidence of extensive neuronal degeneration. Patients with HE-PHD had deregulated mitochondrial complex expression, particularly complexes II-III, levels of which were lower in frontal cortex versus controls (p = 0.027, 95% [CI 17.1, 17.6]; p = 0.002, 95% CI [16.6, 16.9]) and patients with AOHD (p = 0.052, 95% [CI 17.0, 17.6]; p = 0.002, 95% [CI 16.6, 16.7]). Hexokinase-II expression was also lower in HE-PHD frontal cortex and striatum versus controls (p = 0.010, 95% [CI 17.8, 18.2]; p = 0.045, 95% [CI 18.6, 18.7]) and in frontal cortex versus patients with AOHD (p = 0.013, 95% [CI 17.7, 18.1]). Expression JOHD levels were consistently different to those of HE-PHD but similar to those of AOHD. INTERPRETATION: Our data suggest a dysfunctional hypometabolic state occurring specifically in paediatric Huntington disease brains. FUNDING: '5 × 1000' Personal Income Tax donation to LIRH Foundation; Italian Ministry of HealthRC2301MH04 and RF-2016-02364123 to CSS.


Assuntos
Hexoquinase , Doença de Huntington , Adulto , Criança , Humanos , Encéfalo/metabolismo , Estudos de Casos e Controles , Fibroblastos/metabolismo , Hexoquinase/metabolismo , Doença de Huntington/genética
4.
Cell Death Dis ; 10(4): 324, 2019 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-30975979

RESUMO

The transcription factor Myeloid Ecotropic Insertion Site 2 (MEIS2) has been identified as a cellular substrate of the E3-ubiquitin ligase complex CRL4-cereblon (CRL4CRBN) in crystal structure and by biochemical screen. Emerging evidence suggests that IMiDs can block MEIS2 from binding to CRBN facilitating the subsequent activation of a CRL4CRBNIMiD-E3-ubiquitin ligase activity and proteasome-mediated degradation of critical substrates regulators of Multiple Myeloma (MM) cell survival and proliferation. Bromodomain and Extra-Terminal (BET) family of proteins are important epigenetic regulators involved in promoting gene expression of several oncogenes, and many studies have revealed important anticancer activities mediated by BET inhibitors (BETi) in hematologic malignancies including MM. Here, we investigated MEIS2 in MM, the role of this protein as a modulator of IMiDs activity and the ability of BETi to inhibit its expression. Our observations indicate that inhibition of MEIS2 in MM cells by RNA interference correlates with reduced growth, induction of apoptosis and enhanced efficacy of different anti-MM drugs. In addition, MEIS2 regulates the expression of Cyclin E/CCNE1 in MM and induction of apoptosis after treatment with the CDK inhibitor Seliciclib/Roscovitine. Interestingly, modulation of MEIS2 can regulate the expression of NKG2D and DNAM-1 NK cell-activating ligands and, importantly, the activity of IMiDs in MM cells. Finally, BETi have the ability to inhibit the expression of MEIS2 in MM, underscoring a novel anticancer activity mediated by these drugs. Our study provides evidence on the role of MEIS2 in MM cell survival and suggests therapeutic strategies targeting of MEIS2 to enhance IMiDs anti-myeloma activity.


Assuntos
Antineoplásicos/farmacologia , Proteínas de Homeodomínio/metabolismo , Mieloma Múltiplo/metabolismo , Fatores de Transcrição/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Antineoplásicos/uso terapêutico , Apoptose/efeitos dos fármacos , Apoptose/genética , Azepinas/farmacologia , Bortezomib/farmacologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/genética , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/genética , Genes Homeobox , Proteínas de Homeodomínio/antagonistas & inibidores , Proteínas de Homeodomínio/genética , Humanos , Imunomodulação/genética , Mieloma Múltiplo/tratamento farmacológico , Mieloma Múltiplo/genética , Mieloma Múltiplo/patologia , Domínios Proteicos/genética , Fatores de Transcrição/antagonistas & inibidores , Fatores de Transcrição/genética , Triazóis/farmacologia , Ubiquitina-Proteína Ligases
5.
Oncoimmunology ; 6(1): e1264564, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28197392

RESUMO

The mechanisms that regulate the expression of the NKG2D and DNAM-1 activating ligands are only partially known, but it is now widely established that their expression is finely regulated at transcriptional, post-transcriptional and post-translational level, and involve numerous stress pathways depending on the type of ligand, stressor, and cell context. We show that treatment of Multiple Myeloma (MM) cells with sub-lethal doses of Vincristine (VCR), an anticancer drug that inhibits the assembly of microtubules, stimulates the expression of NKG2D and DNAM-1 activating ligands, rendering these cells more susceptible to NK cell-mediated killing. Herein, we focused our attention on the identification of the signaling pathways leading to de novo surface expression of ULBP-1, and to MICA and PVR upregulation on VCR-treated MM cells, both at protein and mRNA levels. We found that p38MAPK differentially regulates drug-dependent ligand upregulation at transcriptional and post-transcriptional level. More specifically, we observed that ULBP-1 expression is attributable to both increased transcriptional activity mediated by ATM-dependent p53 activation, and enhanced mRNA stability; while the p38-activated E2F1 transcription factor regulates MICA and PVR mRNA expression. All together, our findings reveal a previously unrecognized activity of VCR as anticancer agent, and indicate that in addition to its established ability to arrest cell growth, VCR can also modulate the expression of NKG2D and DNAM-1 activating ligand on tumor cells and thus promoting NK cell-mediated immunosurveillance.

6.
Oncoimmunology ; 6(3): e1279372, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28405503

RESUMO

Exosomes are a class of nanovesicles formed and released through the late endosomal compartment and represent an important mode of intercellular communication. The ability of anticancer chemotherapy to enhance the immunogenic potential of malignant cells mainly relies on the establishment of the immunogenic cell death (ICD) and the release of damage-associated molecular patterns (DAMPs). Here, we investigated whether genotoxic stress could promote the release of exosomes from multiple myeloma (MM) cells and studied the immunomodulatory properties they exert on NK cells, a major component of the antitumor immune response playing a key role in the immunosurveillance of MM. Our findings show that melphalan, a genotoxic agent used in MM therapy, significantly induces an increased exosome release from MM cells. MM cell-derived exosomes are capable of stimulating IFNγ production, but not the cytotoxic activity of NK cells through a mechanism based on the activation of NF-κB pathway in a TLR2/HSP70-dependent manner. Interestingly, HSP70+ exosomes are primarily found in the bone marrow (BM) of MM patients suggesting that they might have a crucial immunomodulatory action in the tumor microenvironment. We also provide evidence that the CD56high NK cell subset is more responsive to exosome-induced IFNγ production mediated by TLR2 engagement. All together, these findings suggest a novel mechanism of synergism between chemotherapy and antitumor innate immune responses based on the drug-promotion of nanovesicles exposing DAMPs for innate receptors.

7.
Curr Med Chem ; 23(24): 2618-2636, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27464520

RESUMO

Nitric Oxide (NO) is a signaling radical, highly diffusible pleiotropic regulator of a large set of different molecular and biological pathways, including, neurotransmission, vasodilatation and macrophagemediated responses against infections. It is produced from the amino acid L-Arginine and oxygen by the enzymatic action of three isoforms of the Nitric Oxide Synthase (NOS), differently expressed and regulated in tissues. Increasing evidence highlights the wide spectrum of action of NO in different pathologic conditions, including cancer. In this regard, a dual role for this molecule as a pro- and anti-tumorigenic mediator has been described, in a context and concentration-dependent manner. Moreover, NO exerts numerous immunologic effects, by operating as an effector molecule in innate immune responses as well as a regulator of adaptive immune components. Here, we will review recent advances in the field of biology of this pleiotropic signaling molecule in cancer, also providing a concise description of the immunoregulatory and effector activities of NO and Reactive Nitrogen Species (RNS). In particular, we will summarize recent knowledge of the molecular mechanisms underlying the complex functions of NO in cancer pathogenesis. We will also address emerging immune-mediated mechanisms regulated by NO to provide a comprehensive view of the complex cellular interactions which control cancer progression and that can be influenced by NO at multiple levels. In the light of different immunologic effects of this molecule, the potential therapeutic implications of novel drugs targeting NO to treat cancer and to improve anti-tumor immune responses will be discussed.


Assuntos
Neoplasias/patologia , Óxido Nítrico/metabolismo , Espécies Reativas de Nitrogênio/metabolismo , Humanos , Imunossupressores/uso terapêutico , Imunoterapia , Células Supressoras Mieloides/metabolismo , Neoplasias/metabolismo , Neoplasias/terapia , Óxido Nítrico Sintase/metabolismo , Isoformas de Proteínas/metabolismo , Transdução de Sinais , Microambiente Tumoral
8.
J Hematol Oncol ; 9(1): 134, 2016 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-27903272

RESUMO

BACKGROUND: Anti-cancer immune responses may contribute to the control of tumors after conventional chemotherapy, and different observations have indicated that chemotherapeutic agents can induce immune responses resulting in cancer cell death and immune-stimulatory side effects. Increasing experimental and clinical evidence highlight the importance of natural killer (NK) cells in immune responses toward multiple myeloma (MM), and combination therapies able to enhance the activity of NK cells against MM are showing promise in treating this hematologic cancer. The epigenetic readers of acetylated histones bromodomain and extra-terminal (BET) proteins are critical regulators of gene expression. In cancer, they can upregulate transcription of key oncogenes such as cMYC, IRF4, and BCL-2. In addition, the activity of these proteins can regulate the expression of osteoclastogenic cytokines during cancer progression. Here, we investigated the effect of BET bromodomain protein inhibition, on the expression of NK cell-activating ligands in MM cells. METHODS: Five MM cell lines [SKO-007(J3), U266, RPMI-8226, ARP-1, JJN3] and CD138+ MM cells isolated from MM patients were used to investigate the activity of BET bromodomain inhibitors (BETi) (JQ1 and I-BET151) and of the selective BRD4-degrader proteolysis targeting chimera (PROTAC) (ARV-825), on the expression and function of several NK cell-activating ligands (NKG2DLs and DNAM-1Ls), using flow cytometry, real-time PCR, transient transfections, and degranulation assays. RESULTS: Our results indicate that inhibition of BET proteins via small molecule inhibitors or their degradation via a hetero-bifunctional PROTAC probe can enhance the expression of MICA, a ligand of the NKG2D receptor, in human MM cell lines and primary malignant plasma cells, rendering myeloma cells more efficient to activate NK cell degranulation. Noteworthy, similar results were obtained using selective CBP/EP300 bromodomain inhibition. Mechanistically, we found that BETi-mediated inhibition of cMYC correlates with the upregulation of miR-125b-5p and the downregulation of the cMYC/miR-125b-5p target gene IRF4, a transcriptional repressor of MICA. CONCLUSIONS: These findings provide new insights on the immuno-mediated antitumor activities of BETi and further elucidate the molecular mechanisms that regulate NK cell-activating ligand expression in MM.


Assuntos
Citotoxicidade Imunológica , Antígenos de Histocompatibilidade Classe I/metabolismo , Células Matadoras Naturais/imunologia , Mieloma Múltiplo/metabolismo , Proteínas/antagonistas & inibidores , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Antígenos de Histocompatibilidade Classe I/efeitos dos fármacos , Humanos , Fatores Reguladores de Interferon/metabolismo , MicroRNAs/metabolismo , Mieloma Múltiplo/imunologia , Subfamília K de Receptores Semelhantes a Lectina de Células NK/metabolismo , Proteínas/fisiologia , Proteínas Proto-Oncogênicas c-myc/metabolismo
9.
Oncotarget ; 6(27): 23609-30, 2015 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-26269456

RESUMO

Immunomodulatory drugs (IMiDs) have potent anti-tumor activities in multiple myeloma (MM) and are able to enhance the cytotoxic function of natural killer (NK) cells, important effectors of the immune response against MM. Here, we show that these drugs can enhance the expression of the NKG2D and DNAM-1 activating receptor ligands MICA and PVR/CD155 in human MM cell lines and primary malignant plasma cells. Depletion of cereblon (CRBN) by shRNA interference strongly impaired upregulation of these ligands and, more interestingly, IMiDs/CRBN-mediated downregulation of the transcription factors Ikaros (IKZF1), Aiolos (IKZF3) and IRF4 was critical for these regulatory mechanisms. Indeed, shRNA knockdown of IKZF1 or IKZF3 expression was both necessary and sufficient for the upregulation of MICA and PVR/CD155 expression, suggesting that these transcription factors can repress these genes; accordingly, the direct interaction and the negative role of IKZF1 and IKZF3 proteins on MICA and PVR/CD155 promoters were demonstrated. Finally, MICA expression was enhanced in IRF4-silenced cells, indicating a specific suppressive role of this transcription factor on MICA gene expression in MM cells.Taken together, these findings describe novel molecular pathways involved in the regulation of MICA and PVR/CD155 gene expression and identify the transcription factors IKZF-1/IKZF-3 and IRF4 as repressors of these genes in MM cells.


Assuntos
Antígenos de Histocompatibilidade Classe I/genética , Fator de Transcrição Ikaros/genética , Fatores Reguladores de Interferon/genética , Células Matadoras Naturais/imunologia , Mieloma Múltiplo/patologia , Receptores Virais/genética , Idoso , Inibidores da Angiogênese/farmacologia , Antígenos de Diferenciação de Linfócitos T/genética , Antígenos de Diferenciação de Linfócitos T/metabolismo , Linhagem Celular Tumoral , Feminino , Antígenos de Histocompatibilidade Classe I/biossíntese , Humanos , Fatores Imunológicos/farmacologia , Lenalidomida , Ligantes , Ativação Linfocitária/efeitos dos fármacos , Masculino , Pessoa de Meia-Idade , Subfamília K de Receptores Semelhantes a Lectina de Células NK/genética , Subfamília K de Receptores Semelhantes a Lectina de Células NK/metabolismo , Regiões Promotoras Genéticas/genética , Receptores Virais/biossíntese , Talidomida/análogos & derivados , Talidomida/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA