RESUMO
Cultivation via classical agar plate (CAP) approaches is widely used to study microbial communities, but they are time-consuming. An alternative approach is the application of single-cell dispensing (SCD), which allows high-throughput, label-free sorting of microscopic particles. We aimed to develop a new anaerobic SCD workflow to cultivate human gut bacteria and compared it with CAP using faecal communities on three rich culture media. We found that the SCD approach significantly decreased the experimental time to obtain pure cultures from 17 ± 4 to 5 ± 0 days, while the isolate diversity and relative abundance coverage were comparable for both approaches. We further tested the total captured fraction by sequencing the sorted bacteria directly after growth as bulk biomass from 2400 dispensed single cells without downstream identification of individual strains. In this approach, the cultured fraction increased from 35.2% to 52.2% for SCD, highlighting the potential for deeper cultivation projects from single samples. SCD-based cultivation also captured species not detected by sequencing (16 ± 5 per sample, including seven novel taxa). From this work, 82 human gut bacterial species across five phyla (Actinobacteriota, Bacteroidota, Desulfobacterota, Firmicutes and Proteobacteria) and 24 families were obtained, including the first cultured member of 11 novel genera and 10 novel species that were fully characterized taxonomically.
Assuntos
Bactérias , Ágar , Anaerobiose , Meios de Cultura , Humanos , RNA Ribossômico 16S/genéticaRESUMO
The cultivation of bacteria is highly biased toward a few phylogenetic groups. Many of the currently underexplored bacterial lineages likely have novel biosynthetic pathways and unknown biochemical features. New cultivation concepts have been developed based on an improved understanding of the ecology of previously not-cultured bacteria. Particularly successful were improved media that mimic the natural types and concentrations of substrates and nutrients, high-throughput cultivation techniques, and approaches that exploit biofilm formation and bacterial interactions. Metagenomics and single-cell genomics can reveal unknown metabolic features of not-yet-cultured bacteria and, if complemented by culture-independent physiological analyses, will help to target functional novelty more efficiently. However, numerous novel types of bacteria that were initially enriched subsequently escaped isolation. Future cultivation work will therefore need to focus on improved subcultivation, purification, and preservation techniques to recover and utilize a larger fraction of microbial diversity.
Assuntos
Bactérias/crescimento & desenvolvimento , Bactérias/isolamento & purificação , Técnicas Bacteriológicas/métodos , Meios de Cultura/químicaRESUMO
Two Listeria-like isolates obtained from mangrove swamps in Goa, India were characterized using polyphasic combinations of phenotypic, chemotaxonomic and whole-genome sequence (WGS)-based approaches. The isolates presented as short, non-spore-forming, Gram-positive rods, that were non-motile, oxidase-negative, catalase-positive and exhibited α-haemolysis on 5â% sheep- and horse-blood agar plates. The 16S rRNA gene sequences exhibited 93.7-99.7â% nucleotide identity to other Listeria species and had less than 92â% nucleotide identity to species of closely related genera, indicating that the isolates are de facto members of the genus Listeria. Their overall fatty acid composition resembled that of other Listeria species, with quantitative differences in iso C15â:â0, anteiso C15â:â0, iso C16â:â0, C16â:â0, iso C17â:â0 and anteiso C17â:â0 fatty acid profiles. Phylogeny based on 406 core coding DNA sequences grouped these two isolates in a monophyletic clade within the genus Listeria. WGS-based average nucleotide identity and in silico DNA-DNA hybridization values were lower than the recommended cut-off values of 95 and 70â%, respectively, to the other Listeria species, indicating that they are founding members of a novel Listeria species. We suggest the name Listeriagoaensis sp. nov. be created and the type strain is ILCC801T (=KCTC 33909;=DSM 29886;=MCC 3285).
Assuntos
Listeria/classificação , Filogenia , Áreas Alagadas , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , Ácidos Graxos/química , Índia , Listeria/genética , Listeria/isolamento & purificação , Hibridização de Ácido Nucleico , RNA Ribossômico 16S/genética , Rhizophoraceae , Análise de Sequência de DNARESUMO
A total of 17 Enterobacter-like isolates were obtained from blood during a septicaemia outbreak in a neonatal unit, Tanzania, that could not be assigned based on phenotypic test to any existing Enterobacter species. Eight representative outbreak isolates were investigated in detail. Fermentation characteristics, biochemical assays and fatty acid profiles for taxonomic analysis were determined and supplemented with information derived from whole genome sequences. Phenotypic and morphological tests revealed that these isolates were Gram-stain-negative, rod-shaped, highly motile and facultatively anaerobic. The fatty acid profile was similar to those of the type strains for all recognized Enterobacter species, with quantitative differences in C17 : 0, C18 : 1ω7c and C17 : 0 cyclo fatty acids. Whole genome sequencing was used to identify taxonomically relevant characteristics, i.e. for 16S rRNA gene sequence analysis, multi-locus sequence analysis (MLSA), in silico DNA-DNA hybridization (isDDH) and average nucleotide identity (ANI). Draft genomes were approximately 4.9âMb in size with a G+C content of 56.0âmol%. The 16S rRNA gene sequence of these eight isolates showed >97 % similarity to all Enterobacter species, while MLSA clustered them closely with the type strains of Enterobacter xiangfangensis and Enterobacter hormaechei. These eight strains showed less than 70 % isDDH identity with the type strains of Enterobacter species. In addition, less than 95 % ANI to the type strains of Enterobacter species was observed. From these results, it is concluded that these isolates possess sufficient characteristics to differentiate them from all recognized Enterobacter species, and should therefore be considered as representing a novel species. The name Enterobacter bugandensis sp. nov. is proposed with EB-247T ( = DSM 29888T = NCCB 100573T) as the type strain.
RESUMO
A dual system for naming prokaryotes is currently in place based on the well-established International Code of Nomenclature of Prokaryotes (ICNP) and the newly created Code of Nomenclature of Prokaryotes Described from Sequence Data (SeqCode). Whilst recent creation of the SeqCode opened an avenue to accelerate the naming of uncultured taxa, the existence of two codes increases the risk of species being assigned multiple validly published names. In this work we present a workflow that aims to limit conflicts by firstly naming novel cultured taxa under the SeqCode, and secondly under the ICNP, enhancing the traceability of the taxa across the two codes. To exemplify this workflow, we describe four novel taxa isolated from the intestine of pigs: Intestinicryptomonas porci gen. nov., sp. nov. (strain CLA-KB-P66T, genome accession GCA_033971905.1TS) within a novel family, Intestinicryptomonaceae; Grylomicrobium aquisgranensis gen. nov., sp. nov. (CLA-KB-P133T, GCA_033971865.1TS); Absicoccus intestinalis sp. nov. (CLA-KB-P134T, GCA_033971885.1TS); and Mesosutterella porci sp. nov. (oilRF-744- wt-GAM-9T, GCF_022134585.1TS).
Assuntos
Filogenia , RNA Ribossômico 16S , Terminologia como Assunto , Animais , Suínos , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , DNA Bacteriano/genética , Microbioma Gastrointestinal , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Intestinos/microbiologia , Genoma Bacteriano/genéticaRESUMO
Microbiome research needs comprehensive repositories of cultured bacteria from the intestine of mammalian hosts. We expanded the mouse intestinal bacterial collection (www.dsmz.de/miBC) to 212 strains, all publicly available and taxonomically described. This includes strain-level diversity, small-sized bacteria, and previously undescribed taxa (one family, 10 genera, and 39 species). This collection enabled metagenome-educated prediction of synthetic communities (SYNs) that capture key functional differences between microbiomes, notably identifying communities associated with either resistance or susceptibility to DSS-induced colitis. Additionally, nine species were used to amend the Oligo-Mouse Microbiota (OMM)12 model, yielding the OMM19.1 model. The added strains compensated for phenotype differences between OMM12 and specific pathogen-free mice, including body composition and immune cells in the intestine and associated lymphoid tissues. Ready-to-use OMM stocks are available for future studies. In conclusion, this work improves our knowledge of gut microbiota diversity in mice and enables functional studies via the modular use of isolates.
Assuntos
Microbioma Gastrointestinal , Microbiota , Camundongos , Animais , Microbioma Gastrointestinal/genética , Bactérias , Metagenoma , Intestinos , Modelos Animais de Doenças , Mamíferos/genéticaRESUMO
The gut microbiome is crucial for both maturation of the immune system and colonization resistance against enteric pathogens. Although chicken are important domesticated animals, the impact of their gut microbiome on the immune system is understudied. Therefore, we investigated the effect of microbiome-based interventions on host mucosal immune responses. Increased levels of IgA and IgY were observed in chickens exposed to maternal feces after hatching compared with strict hygienic conditions. This was accompanied by increased gut bacterial diversity as assessed by 16S rRNA gene amplicon sequencing. Cultivation work allowed the establishment of a collection of 43 bacterial species spanning 4 phyla and 19 families, including the first cultured members of 3 novel genera and 4 novel species that were taxonomically described. This resource is available at www.dsmz.de/chibac A synthetic community consisting of nine phylogenetically diverse and dominant species from this collection was designed and found to be moderately efficient in boosting immunoglobulin levels when provided to chickens early in life.IMPORTANCE The immune system plays a crucial role in sustaining animal health. Its development is markedly influenced by early microbial colonization of the gastrointestinal tract. As chicken are fully dependent on environmental microbes after hatching, extensive hygienic measures in production facilities are detrimental to the microbiota, resulting in low colonization resistance against pathogens. To combat enteric infections, antibiotics are frequently used, which aggravates the issue by altering gut microbiota colonization. Intervention strategies based on cultured gut bacteria are proposed to influence immune responses in chicken.
RESUMO
Our knowledge about the gut microbiota of pigs is still scarce, despite the importance of these animals for biomedical research and agriculture. Here, we present a collection of cultured bacteria from the pig gut, including 110 species across 40 families and nine phyla. We provide taxonomic descriptions for 22 novel species and 16 genera. Meta-analysis of 16S rRNA amplicon sequence data and metagenome-assembled genomes reveal prevalent and pig-specific species within Lactobacillus, Streptococcus, Clostridium, Desulfovibrio, Enterococcus, Fusobacterium, and several new genera described in this study. Potentially interesting functions discovered in these organisms include a fucosyltransferase encoded in the genome of the novel species Clostridium porci, and prevalent gene clusters for biosynthesis of sactipeptide-like peptides. Many strains deconjugate primary bile acids in in vitro assays, and a Clostridium scindens strain produces secondary bile acids via dehydroxylation. In addition, cells of the novel species Bullifex porci are coccoidal or spherical under the culture conditions tested, in contrast with the usual helical shape of other members of the family Spirochaetaceae. The strain collection, called 'Pig intestinal bacterial collection' (PiBAC), is publicly available at www.dsmz.de/pibac and opens new avenues for functional studies of the pig gut microbiota.
Assuntos
Bactérias/classificação , Bactérias/isolamento & purificação , Microbioma Gastrointestinal , Intestinos/microbiologia , Filogenia , Suínos/microbiologia , Idoso de 80 Anos ou mais , Animais , Bactérias/genética , Bactérias/metabolismo , Ácidos e Sais Biliares/metabolismo , Biodiversidade , Clostridium/classificação , Clostridium/genética , Clostridium/isolamento & purificação , Fezes/microbiologia , Feminino , Microbioma Gastrointestinal/genética , Genes Bacterianos/genética , Especificidade de Hospedeiro , Humanos , Masculino , Metagenoma , Família Multigênica , RNA Ribossômico 16SRESUMO
BACKGROUND: Bacteria within family S24-7 (phylum Bacteroidetes) are dominant in the mouse gut microbiota and detected in the intestine of other animals. Because they had not been cultured until recently and the family classification is still ambiguous, interaction with their host was difficult to study and confusion still exists regarding sequence data annotation. METHODS: We investigated family S24-7 by combining data from large-scale 16S rRNA gene analysis and from functional and taxonomic studies of metagenomic and cultured species. RESULTS: A total of 685 species was inferred by full-length 16S rRNA gene sequence clustering. While many species could not be assigned ecological habitats (93,045 samples analyzed), the mouse was the most commonly identified host (average of 20% relative abundance and nine co-occurring species). Shotgun metagenomics allowed reconstruction of 59 molecular species, of which 34 were representative of the 16S rRNA gene-derived species clusters. In addition, cultivation efforts allowed isolating five strains representing three species, including two novel taxa. Genome analysis revealed that S24-7 spp. are functionally distinct from neighboring families and versatile with respect to complex carbohydrate degradation. CONCLUSIONS: We provide novel data on the diversity, ecology, and description of bacterial family S24-7, for which the name Muribaculaceae is proposed.
Assuntos
Técnicas Bacteriológicas/métodos , Bacteroides/classificação , Metagenômica/métodos , RNA Ribossômico 16S/genética , Animais , Bacteroides/genética , Bacteroides/crescimento & desenvolvimento , Biodiversidade , DNA Bacteriano/genética , DNA Ribossômico/genética , Microbioma Gastrointestinal , Camundongos , Filogenia , Análise de Sequência de DNA , Especificidade da EspécieRESUMO
Clavibacter michiganensis subsp. michiganensis is a plant-pathogenic actinomycete that causes bacterial wilt and canker of tomato. The nucleotide sequence of the genome of strain NCPPB382 was determined. The chromosome is circular, consists of 3.298 Mb, and has a high G+C content (72.6%). Annotation revealed 3,080 putative protein-encoding sequences; only 26 pseudogenes were detected. Two rrn operons, 45 tRNAs, and three small stable RNA genes were found. The two circular plasmids, pCM1 (27.4 kbp) and pCM2 (70.0 kbp), which carry pathogenicity genes and thus are essential for virulence, have lower G+C contents (66.5 and 67.6%, respectively). In contrast to the genome of the closely related organism Clavibacter michiganensis subsp. sepedonicus, the genome of C. michiganensis subsp. michiganensis lacks complete insertion elements and transposons. The 129-kb chp/tomA region with a low G+C content near the chromosomal origin of replication was shown to be necessary for pathogenicity. This region contains numerous genes encoding proteins involved in uptake and metabolism of sugars and several serine proteases. There is evidence that single genes located in this region, especially genes encoding serine proteases, are required for efficient colonization of the host. Although C. michiganensis subsp. michiganensis grows mainly in the xylem of tomato plants, no evidence for pronounced genome reduction was found. C. michiganensis subsp. michiganensis seems to have as many transporters and regulators as typical soil-inhabiting bacteria. However, the apparent lack of a sulfate reduction pathway, which makes C. michiganensis subsp. michiganensis dependent on reduced sulfur compounds for growth, is probably the reason for the poor survival of C. michiganensis subsp. michiganensis in soil.
Assuntos
Actinobacteria/genética , DNA Bacteriano/genética , Genoma Bacteriano , Solanum lycopersicum/microbiologia , Actinobacteria/patogenicidade , Composição de Bases/genética , DNA Bacteriano/química , Eletroforese em Gel de Campo Pulsado , Genes Bacterianos/genética , Ilhas Genômicas/genética , Modelos Genéticos , Dados de Sequência Molecular , Óperon/genética , Plasmídeos/genética , Análise de Sequência de DNA , Serina Endopeptidases/genéticaRESUMO
Intestinal bacteria influence mammalian physiology, but many types of bacteria are still uncharacterized. Moreover, reference strains of mouse gut bacteria are not easily available, although mouse models are extensively used in medical research. These are major limitations for the investigation of intestinal microbiomes and their interactions with diet and host. It is thus important to study in detail the diversity and functions of gut microbiota members, including those colonizing the mouse intestine. To address these issues, we aimed at establishing the Mouse Intestinal Bacterial Collection (miBC), a public repository of bacterial strains and associated genomes from the mouse gut, and studied host-specificity of colonization and sequence-based relevance of the resource. The collection includes several strains representing novel species, genera and even one family. Genomic analyses showed that certain species are specific to the mouse intestine and that a minimal consortium of 18 strains covered 50-75% of the known functional potential of metagenomes. The present work will sustain future research on microbiota-host interactions in health and disease, as it will facilitate targeted colonization and molecular studies. The resource is available at www.dsmz.de/miBC.
Assuntos
Bactérias/isolamento & purificação , Biodiversidade , Bancos de Espécimes Biológicos , Microbioma Gastrointestinal/fisiologia , Especificidade de Hospedeiro , Intestinos/microbiologia , Animais , Bactérias/classificação , Bactérias/genética , Microbioma Gastrointestinal/genética , Genoma Bacteriano , CamundongosRESUMO
We resequenced the complete genome of the virulent and multidrug-resistant pathogen Clostridium difficile strain 630. A combination of single-molecule real-time and Illumina sequencing technology revealed the presence of an additional rRNA gene cluster, additional tRNAs, and the absence of a transposon in comparison to the published and reannotated genome sequence.
RESUMO
Planctomyces brasiliensis Schlesner 1990 belongs to the order Planctomycetales, which differs from other bacterial taxa by several distinctive features such as internal cell compartmentalization, multiplication by forming buds directly from the spherical, ovoid or pear-shaped mother cell and a cell wall consisting of a proteinaceous layer rather than a peptidoglycan layer. The first strains of P. brasiliensis, including the type strain IFAM 1448(T), were isolated from a water sample of Lagoa Vermelha, a salt pit near Rio de Janeiro, Brasil. This is the second completed genome sequence of a type strain of the genus Planctomyces to be published and the sixth type strain genome sequence from the family Planctomycetaceae. The 6,006,602 bp long genome with its 4,811 protein-coding and 54 RNA genes is a part of the G enomic E ncyclopedia of Bacteria and Archaea project. Phylogenomic analyses indicate that the classification within the Planctomycetaceae is partially in conflict with its evolutionary history, as the positioning of Schlesneria renders the genus Planctomyces paraphyletic. A re-analysis of published fatty-acid measurements also does not support the current arrangement of the two genera. A quantitative comparison of phylogenetic and phenotypic aspects indicates that the three Planctomyces species with type strains available in public culture collections should be placed in separate genera. Thus the genera Gimesia, Planctopirus and Rubinisphaera are proposed to accommodate P. maris, P. limnophilus and P. brasiliensis, respectively. Pronounced differences between the reported G + C content of Gemmata obscuriglobus, Singulisphaera acidiphila and Zavarzinella formosa and G + C content calculated from their genome sequences call for emendation of their species descriptions. In addition to other features, the range of G + C values reported for the genera within the Planctomycetaceae indicates that the descriptions of the family and the order should be emended.
RESUMO
Spirochaeta africana Zhilina et al. 1996 is an anaerobic, aerotolerant, spiral-shaped bacterium that is motile via periplasmic flagella. The type strain of the species, Z-7692(T), was isolated in 1993 or earlier from a bacterial bloom in the brine under the trona layer in a shallow lagoon of the alkaline equatorial Lake Magadi in Kenya. Here we describe the features of this organism, together with the complete genome sequence, and annotation. Considering the pending reclassification of S. caldaria to the genus Treponema, S. africana is only the second 'true' member of the genus Spirochaeta with a genome-sequenced type strain to be published. The 3,285,855 bp long genome of strain Z-7692(T) with its 2,817 protein-coding and 57 RNA genes is a part of the G enomic E ncyclopedia of B acteria and A rchaea project.
RESUMO
Spirochaeta caldaria Pohlschroeder et al. 1995 is an obligately anaerobic, spiral-shaped bacterium that is motile via periplasmic flagella. The type strain, H1(T), was isolated in 1990 from cyanobacterial mat samples collected at a freshwater hot spring in Oregon, USA, and is of interest because it enhances the degradation of cellulose when grown in co-culture with Clostridium thermocellum. Here we provide a taxonomic re-evaluation for S. caldaria based on phylogenetic analyses of 16S rRNA sequences and whole genomes, and propose the reclassification of S. caldaria and two other Spirochaeta species as members of the emended genus Treponema. Whereas genera such as Borrelia and Sphaerochaeta possess well-distinguished genomic features related to their divergent lifestyles, the physiological and functional genomic characteristics of Spirochaeta and Treponema appear to be intermixed and are of little taxonomic value. The 3,239,340 bp long genome of strain H1(T) with its 2,869 protein-coding and 59 RNA genes is a part of the G enomic E ncyclopedia of Bacteria and Archaea project.
RESUMO
Cellulose degrading enzymes have important functions in the biotechnology industry, including the production of biofuels from lignocellulosic biomass. Anaerobes including Clostridium species organize cellulases and other glycosyl hydrolases into large complexes known as cellulosomes. In contrast, aerobic actinobacteria utilize systems comprised of independently acting enzymes, often with carbohydrate binding domains. Numerous actinobacterial genomes have become available through the Genomic Encyclopedia of Bacteria and Archaea (GEBA) project. We identified putative cellulose-degrading enzymes belonging to families GH5, GH6, GH8, GH9, GH12, GH48, and GH51 in the genomes of eleven members of the actinobacteria. The eleven organisms were tested in several assays for cellulose degradation, and eight of the organisms showed evidence of cellulase activity. The three with the highest cellulase activity were Actinosynnema mirum, Cellulomonas flavigena, and Xylanimonas cellulosilytica. Cellobiose is known to induce cellulolytic enzymes in the model organism Thermobifida fusca, but only Nocardiopsis dassonvillei showed higher cellulolytic activity in the presence of cellobiose. In T. fusca, cellulases and a putative cellobiose ABC transporter are regulated by the transcriptional regulator CelR. Nine organisms appear to use the CelR site or a closely related binding site to regulate an ABC transporter. In some, CelR also regulates cellulases, while cellulases are controlled by different regulatory sites in three organisms. Mining of genome data for cellulose degradative enzymes followed by experimental verification successfully identified several actinobacteria species which were not previously known to degrade cellulose as cellulolytic organisms.
Assuntos
Actinobacteria/genética , Actinobacteria/metabolismo , Celulose/metabolismo , Genômica , Transportadores de Cassetes de Ligação de ATP/genética , Actinobacteria/classificação , Aerobiose , Celulase/genética , Celulase/metabolismo , Regulação Bacteriana da Expressão Gênica , Ordem dos Genes , Genômica/métodos , N-Glicosil Hidrolases/genética , N-Glicosil Hidrolases/metabolismo , Óperon , Filogenia , Transcrição GênicaRESUMO
Spirochaeta coccoides Dröge et al. 2006 is a member of the genus Spirochaeta Ehrenberg 1835, one of the oldest named genera within the Bacteria. S. coccoides is an obligately anaerobic, Gram-negative, non-motile, spherical bacterium that was isolated from the hindgut contents of the termite Neotermes castaneus. The species is of interest because it may play an important role in the digestion of breakdown products from cellulose and hemicellulose in the termite gut. Here we provide a taxonomic re-evaluation for strain SPN1(T), and based on physiological and genomic characteristics, we propose its reclassification as a novel species in the genus Sphaerochaeta, a recently published sister group of the Spirochaeta. The 2,227,296 bp long genome of strain SPN1(T) with its 1,866 protein-coding and 58 RNA genes is a part of the Genomic Encyclopedia of Bacteria and Archaea project.
RESUMO
Mahella australiensis Bonilla Salinas et al. 2004 is the type species of the genus Mahella, which belongs to the family Thermoanaerobacteraceae. The species is of interest because it differs from other known anaerobic spore-forming bacteria in its G+C content, and in certain phenotypic traits, such as carbon source utilization and relationship to temperature. Moreover, it has been discussed that this species might be an indigenous member of petroleum and oil reservoirs. This is the first completed genome sequence of a member of the genus Mahella and the ninth completed type strain genome sequence from the family Thermoanaerobacteraceae. The 3,135,972 bp long genome with its 2,974 protein-coding and 59 RNA genes is a part of the Genomic Encyclopedia of Bacteria and Archaea project.
RESUMO
Pyrolobus fumarii Blöchl et al. 1997 is the type species of the genus Pyrolobus, which belongs to the crenarchaeal family Pyrodictiaceae. The species is a facultatively microaerophilic non-motile crenarchaeon. It is of interest because of its isolated phylogenetic location in the tree of life and because it is a hyperthermophilic chemolithoautotroph known as the primary producer of organic matter at deep-sea hydrothermal vents. P. fumarii exhibits currently the highest optimal growth temperature of all life forms on earth (106°C). This is the first completed genome sequence of a member of the genus Pyrolobus to be published and only the second genome sequence from a member of the family Pyrodictiaceae. Although Diversa Corporation announced the completion of sequencing of the P. fumarii genome on September 25, 2001, this sequence was never released to the public. The 1,843,267 bp long genome with its 1,986 protein-coding and 52 RNA genes is a part of the Genomic Encyclopedia of Bacteria and Archaea project.