Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Crit Rev Biotechnol ; 43(7): 971-981, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35968911

RESUMO

Colloidal gas aphrons (CGAs) are highly stable, spherical, micrometer-sized bubbles encapsulated by surfactant multilayers. They have several intriguing properties, including: high stability, large interfacial area, and the ability to maintain the same charge as their parent molecules. The physical properties of CGAs make them ideal for biotechnological applications such as the recovery of a variety of: biomolecules, particularly proteins, yeast, enzymes, and microalgae. In this review, the bio-application of CGAs for the recovery of natural components is presented, as well as: experimental results, technical challenges, and critical research directions for the future. Experimental results from the literature showed that the recovery of biomolecules was mainly determined by electrostatic or hydrophobic interactions between polyphenols and proteins (lysozyme, ß-casein, ß-lactoglobulin, etc.), yeast, biological molecules (gallic acid and norbixin), and microalgae with CGAs. Knowledge transfer is essential for commercializing CGA-based bio-product recovery, which will be recognized as a viable technology in the future.


Assuntos
Microbolhas , Saccharomyces cerevisiae , Tensoativos/química , Proteínas , Biotecnologia , Nucleotidiltransferases
2.
Langmuir ; 35(6): 2343-2357, 2019 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-30626190

RESUMO

Halloysite nanotubes (HNTs) were assembled into mesoporous/macroporous microparticles (c-g-HNTs MPs) using Pickering template-assisted approach. To unravel the stabilization mechanism in Pickering emulsion form, several emulsions and microparticles were prepared at various conditions and visualized using confocal laser scanning microscopy. The prepared c-g-HNTs MPs were used to treat emulsified oil solutions resulting in a maximum removal efficiency of 94.47%. The kinetics data of oil adsorption onto c-g-HNTs MPs was best fitted by the pseudo-second-order kinetic model ( R2 = 0.9983). The maximum monolayer adsorption capacity of oil onto c-g-HNTs MPs as predicted by the multilayer Brunauer-Emmett-Teller model was found to be 788 mg/g. Compared with pristine HNTs, c-g-HNTs MPs exhibited higher self-settleability rates in aqueous solutions as well as in emulsified oil solutions, demonstrating their candidacy for practical water treatment applications. The c-g-HNTs MPs were repeatedly used for five adsorption-desorption cycles with minimal losses noticed in their performance.

3.
Chemosphere ; 337: 139372, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37391079

RESUMO

In this study, the visible light active pristine, binary and ternary g-C3N4/CdS/CuFe2O4 nanocomposite is prepared through a coprecipitation-assisted hydrothermal technique. The characterization of the as-synthesized catalysts was conducted using various analytical techniques. When compared with pristine and binary nanocomposites, the ternary g-C3N4/CdS/CuFe2O4 nanocomposite exhibits higher photocatalytic degradation of azithromycin (AZ) under a visible light source. Ternary nanocomposite exhibits high AZ removal efficiency of about 85% within 90 min of the photocatalytic degradation experiment. Enhanced the visible light absorption ability and the suppression of photoexcited charge carriers is also achieved by forming heterojunctions between pristine materials. The ternary nanocomposite exhibited ∼2 times higher degradation efficiency than CdS/CuFe2O4 nanoparticles and ∼3 times higher degradation efficiency than CuFe2O4. The trapping experiments were conducted and it shows superoxide radicals (O2•-) are the predominant reactive species involved in the photocatalytic degradation reaction. This study provided a promising approach for the treatment of contaminated water using g-C3N4/CdS/CuFe2O4 as a photocatalyst.


Assuntos
Azitromicina , Nanocompostos , Luz , Catálise
4.
Environ Pollut ; 339: 122753, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37852314

RESUMO

The presence of antibiotics in water poses significant threats to both human health and the environment. Addressing this issue requires the effective treatment of medical wastewater. Photoelectrochemical advanced oxidation processes (PEAOPs) are emerging as promising solutions for wastewater treatment. This process utilizes photocatalysts to convert charge carriers into reactive species such as hydroxyl radicals and superoxide ions, which are essential for degrading pollutants in wastewater. However, limitations in charge carrier separation and transport have hindered the efficiency of photoelectrochemical advanced oxidation processes. To overcome these limitations, we designed WS2@CoFe2O4 heterojunctions, optimizing their energy levels to enhance charge transport and separation. This improvement significantly increased the oxidation of antibiotics such as amoxicillin and azithromycin. Multiple reactions occurred at the WS2@CoFe2O4 heterojunctions during photoelectrochemical advanced oxidation processes, leading to the impressive degradation of up to 99% of antibiotics under visible light irradiation at 0.8 V. Urea and H2O2 acted as oxidation agents within photoelectrochemical advanced oxidation processes, amplifying the generation of hydroxyl radicals and superoxide ions, further enhancing antibiotic oxidation. Moreover, the WS2@CoFe2O4 photoanode efficiently oxidized toxic antibiotics while converting As(III) into the less harmful As(V). Crucially, recyclability tests confirmed the robustness of the WS2@CoFe2O4 photoanode, ensuring its suitability for prolonged use in photoelectrochemical advanced oxidation processes. Integrating WS2@CoFe2O4 photoanodes into water purification systems can enhance efficiency, reduce energy consumption, and improve economic viability. This technology's scalability and its ability to protect ecosystems while conserving water resources make it a promising solution for addressing the critical issue of antibiotic pollution in water environments.


Assuntos
Metais Pesados , Poluentes Químicos da Água , Humanos , Águas Residuárias , Antibacterianos , Peróxido de Hidrogênio/química , Superóxidos , Ecossistema , Água , Radical Hidroxila , Oxirredução , Poluentes Químicos da Água/análise
5.
ACS Omega ; 8(2): 2377-2388, 2023 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-36687077

RESUMO

This work describes a one-pot synthesis of dendrite-like hyperbranched polyglycerols (HPGs) via a ring-opening multibranching polymerization (ROMBP) process using a bis(5,7-dichloro-2-methyl-8-quinolinolato)methyl aluminum complex (1) as a catalyst and 1,1,1-tris(hydroxymethyl)propane/trimethylol propane (TMP) as an initiator. Single-crystal X-ray diffraction (XRD) analysis was used to elucidate the molecular structure of complex 1. Inverse-gated (IG)13C NMR analysis of HPGs showed degree of branching between 0.50 and 0.57. Gel permeation chromatography (GPC) analysis of the HPG polymers provided low, medium, and high-molecular weight (M n) polymers ranging from 14 to 73 kDa and molecular weight distributions (M w/M n) between 1.16 and 1.35. The obtained HPGs exhibited high wettability with water contact angle between 18 and 21° and T g ranging between -39 and -55 °C. Notably, ancillary ligand-supported aluminum complexes as catalysts for HPG polymerization reactions have not been reported to date. The obtained HPG polymers in the presence of the aluminum complex (1) can be used for various biomedical applications. Here, nanocomposite electrospun fibers were fabricated with synthesized HPG polymer. The nanofibers were subjected to cell culture experiments to evaluate cytocompatibility behavior with L929 and MG63 cells. The cytocompatibility studies of HPG polymer and nanocomposite scaffold showed high cell viability and spreading. The study results concluded, synthesized HPG polymers and composite nanofibers can be used for various biomedical applications.

6.
Chemosphere ; 340: 139907, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37633615

RESUMO

Phosphorus-modified copper ferrite (P-CuFe2O4) nanoparticles were prepared by a simple sol-gel auto-combustion process and used for the photocatalytic ozonation of lomefloxacin (LOM). The morphology, crystallinity, and structure of the synthesized CuFe2O4 and P-CuFe2O4 nanoparticles were investigated using various techniques. The high-performance liquid chromatography (HPLC) analysis revealed that the degradation of LOM achieved a 99% reduction after a duration of 90 min in the photocatalytic ozonation system. In accordance with the charge-to-mass ratio, four intermediates were proposed with the help of their fragments obtained in LC-MS/MS. The degradation kinetics of lomefloxacin followed a pseudo-first order reaction, and the degradation mechanism was proposed based on the results. P0.035Cu0.965Fe2O4 showed the highest total organic carbon (TOC) removal with 20.15% in 90 min, highest specific surface area and the highest fluoride and ammonium production using the ion chromatography (IC). The experimental results obtained from the electron paramagnetic resonance (EPR) analysis indicated that the modified P-CuFe2O4 samples exhibited significantly elevated levels of superoxide (.O2-) production compared to the CuFe2O4 samples. The findings of this study demonstrate that the introduction of phosphorus modification into the copper ferrite photocatalyst led to an augmentation of both the specific surface area and the total pore volume. Furthermore, the incorporation of phosphorus served to promote the efficient separation of electron-hole pairs by effectively trapping electrons in the conduction band, hence enhancing the degradation efficiency.


Assuntos
Nanopartículas , Ozônio , Cromatografia Líquida , Cobre , Espectrometria de Massas em Tandem
7.
ACS Omega ; 8(21): 18543-18553, 2023 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-37273629

RESUMO

One of the most common diseases in women is breast cancer, which has the highest death globally. Surgery, chemotherapy, hormone treatments, and radiation are the current treatment options for breast cancer. However, these options have several adverse side effects. Recently, peptide-based drugs have gained attention as anticancer therapy. Studies report that peptides from biological toxins such as venom and virulent pathogenic molecules have potential therapeutic effects against multiple diseases, including cancers. This study reports on the in vitro anticancer effect of a short peptide, PS9, derived from a virulent protein, glycosyl hydrolase, of an aquatic fungus, Aphanomyces invadans. This peptide arrests MCF-7 proliferation by regulating intercellular reactive oxygen species (ROS) and apoptotic pathways. Based on the potential for the anticancer effect of PS9, from the in silico analysis, in vitro analyses using MCF-7 cells were executed. PS9 showed a dose-dependent activity; its IC50 value was 25.27-43.28 µM at 24 h. The acridine orange/ethidium bromide (AO/EtBr) staining, to establish the status of apoptosis in MCF-7 cells, showed morphologies for early and late apoptosis and necrotic cell death. The 2,7-dichlorodihydrofluorescein diacetate (DCFDA) staining and biochemical analyses showed a significant increase in reactive oxygen species (ROS). Besides, PS9 has been shown to regulate the caspase-mediated apoptotic pathway. PS9 is nontoxic, in vitro, and in vivo zebrafish larvae. Together, PS9 may have an anticancer effect in vitro.

8.
ACS Omega ; 7(31): 27390-27399, 2022 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-35967063

RESUMO

Herein, pure α-Fe2O3, binary α-Fe2O3/NiO, and ternary α-Fe2O3/NiO/rGO composites were prepared by a hydrothermal method. The properties of the prepared materials were studied by powder X-ray diffraction, scanning electron microscopy, TEM, XPS, and Brunauer-Emmett-Teller techniques. The clusters of smaller α-Fe2O3 nanoparticles (∼30 nm) along with conducting NiO was freely covered by the rGO layer sheet, which offer a higher electrode-electrolyte interface for improved electrochemical performance. The ternary composite has shown a higher specific capacitance of 747 F g-1@ a current density of 1 A g-1 in a 6 M KOH solution, when compared with that of α-Fe2O3/rGO (610 F g-1@1 A g-1) and α-Fe2O3 (440 F g-1@1 A g-1) and the nanocomposite. Moreover, the ternary α-Fe2O3/NiO/rGO composite exhibited a 98% rate capability @ 10 A g-1. The exceptional electrochemical performance of ternary composites has been recognized as a result of their well-designed unique architecture, which provides a large surface area and synergistic effects among all three constituents. The asymmetric supercapacitor (ASC) device was assembled using the ternary α-Fe2O3/NiO/rGO composite as the anode electrode (positive) material and activated carbon as the cathode (negative) material. The ASC device has an energy density of 35.38 W h kg-1 at a power density of 558.6 W kg-1 and retains a 94.52% capacitance after 5000 cycles at a 1 A g-1 current density.

9.
Chemosphere ; 307(Pt 4): 136105, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35988770

RESUMO

The SnO2 and SnO2/rGO nanostructures were successfully synthesized using the facile hydrothermal synthesis technique. The prepared nanostructures were well studied using different techniques such as XRD, XPS, UV-DRS, FT-IR, EDX, SEM and HR-TEM analysis. The crystalline nature of SnO2 and SnO2/rGO was confirmed by the XRD technique. The formation of highly pure SnO2 and SnO2/rGO nanostructures was confirmed by EDX analysis. The morphological results show the good agglomeration of several spherical nanoparticles. The optical properties were studied through the UV-DRS technique and the bandgap energies of SnO2 and SnO2/rGO are estimated to be 3.12 eV and 2.71 eV, respectively. The photocatalytic degradation percentage in presence of SnO2 and SnO2/rGO against RhB was found to be 96% and 98%, respectively. The degradation of TTC molecules was estimated as 90% and 88% with SnO2/rGO and SnO2, respectively. The degradation of both RhB and TTC molecules was well suited with the pseudo-first-order kinetics. The results of successive experiments clearly show the enhancement in the photocatalytic properties in the SnO2/rGO nanostructures.


Assuntos
Poluentes Ambientais , Nanocompostos , Catálise , Grafite , Cinética , Nanocompostos/química , Preparações Farmacêuticas , Espectroscopia de Infravermelho com Transformada de Fourier , Compostos de Estanho/química
10.
Turk J Chem ; 45(6): 1916-1932, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-38144586

RESUMO

Porous magnetite (Fe3O4) and hematite (α-Fe2O3) nanoparticles were prepared via the sol-gel auto-combustion method. The gels were prepared by reacting ferric nitrates (as oxidants) with starch (as fuel) at an elevated temperature of 200 °C. Different ratios (Φ) of ferric nitrates to starch were used for the synthesis (Φ = fuel/oxidant). The synthesized iron oxides were characterized by Fourier transform infrared (FT-IR) spectroscopy, Raman spectroscopy, X-ray diffraction (XRD) spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM), Brunauer-Emmet-Teller (BET) and vibrating sample magnetometer (VSM) analysis techniques. The crystal structure, morphology, and specific surface area of the iron oxide nanoparticles (Fe3O4 and α-Fe2O3) were found to be dependent on the starch content. The FT-IR, XRD and VSM analysis of the iron oxides for Φ = 0.3 and 0.7 confirmed the formation of the α-Fe2O3 core, whereas at Φ = 1, 1.7, and 2 showed that Fe3O4 cores were formed with the highest saturation magnetization of 60.36 emu/g at Φ = 1. The morphology of the Fe3O4 nanoparticles exhibited a quasi-spherical shape, while α-Fe2O3 nanoparticles appeared polygonal and formed clusters. The highest specific surface area was found to be 48 m2 g-1 for Φ = 1.7 owing to the rapid thermal decomposition process. Type II and type III isotherms indicated mesoporous structures.

11.
Nanomaterials (Basel) ; 10(9)2020 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-32957557

RESUMO

A green and cost-effective technique for the preparation of silver nanoparticles (Algae-AgNPs) as a colorimetric sensor for hydrogen peroxide (H2O2) is described. Silver nanoparticles were capped using the green algae (Noctiluca scintillans) extract at an optimum time of 3 h at 80 °C. The pH of the plant extract (pH = 7.0) yields nanoparticles with a mean size of 4.13 nm and a zeta potential of 0.200 ± 0.02 mV and negative polarity, using dynamic light scattering (DLS). High-resolution transmission electron microscopy (HRTEM) analysis showed regular spherical particles with the average size of 4.5 nm. Selected area electron diffraction (SAED) results revealed the polycrystalline nature of the silver nanoparticles. The obtained patterns were indexed as (111), (200), (220), and (311) reflections of the fcc (face centered cubic) silver crystal based on their d-spacing of 2.47, 2.13, 1.49, and 1.27 Å, respectively. The apparent color change from brown to colorless was observed when nanoparticles reacted with H2O2. Linear responses were obtained in three different ranges (nM, µM, and mM). Limits of detection (LOD) of 1.33 ± 0.02 and 1.77 ± 0.02 nM and quantitation limits (LOQ) of 7.31 ± 0.03 and 9.67 ± 0.03 nM were obtained for Abs and ΔAbs calibration curves, respectively. 10% v/v Algae-AgNPs solution inhibited Staphylococcus aureus over Escherichia coli, while a 50% reduction of tumor cell growth of MDA-MB-231 human breast adenocarcinoma was obtained.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA