Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Crit Rev Food Sci Nutr ; 63(23): 6547-6563, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35114860

RESUMO

Climate change, the growth in world population, high levels of food waste and food loss, and the risk of new disease or pandemic outbreaks are examples of the many challenges that threaten future food sustainability and the security of the planet and urgently need to be addressed. The fourth industrial revolution, or Industry 4.0, has been gaining momentum since 2015, being a significant driver for sustainable development and a successful catalyst to tackle critical global challenges. This review paper summarizes the most relevant food Industry 4.0 technologies including, among others, digital technologies (e.g., artificial intelligence, big data analytics, Internet of Things, and blockchain) and other technological advances (e.g., smart sensors, robotics, digital twins, and cyber-physical systems). Moreover, insights into the new food trends (such as 3D printed foods) that have emerged as a result of the Industry 4.0 technological revolution will also be discussed in Part II of this work. The Industry 4.0 technologies have significantly modified the food industry and led to substantial consequences for the environment, economics, and human health. Despite the importance of each of the technologies mentioned above, ground-breaking sustainable solutions could only emerge by combining many technologies simultaneously. The Food Industry 4.0 era has been characterized by new challenges, opportunities, and trends that have reshaped current strategies and prospects for food production and consumption patterns, paving the way for the move toward Industry 5.0.


Assuntos
Inteligência Artificial , Eliminação de Resíduos , Humanos , Alimentos , Indústria Alimentícia , Internet
2.
Sensors (Basel) ; 23(5)2023 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-36904632

RESUMO

Industrialization and rapid urbanization in almost every country adversely affect many of our environmental values, such as our core ecosystem, regional climate differences and global diversity. The difficulties we encounter as a result of the rapid change we experience cause us to encounter many problems in our daily lives. The background of these problems is rapid digitalization and the lack of sufficient infrastructure to process and analyze very large volumes of data. Inaccurate, incomplete or irrelevant data produced in the IoT detection layer causes weather forecast reports to drift away from the concepts of accuracy and reliability, and as a result, activities based on weather forecasting are disrupted. A sophisticated and difficult talent, weather forecasting needs the observation and processing of enormous volumes of data. In addition, rapid urbanization, abrupt climate changes and mass digitization make it more difficult for the forecasts to be accurate and reliable. Increasing data density and rapid urbanization and digitalization make it difficult for the forecasts to be accurate and reliable. This situation prevents people from taking precautions against bad weather conditions in cities and rural areas and turns into a vital problem. In this study, an intelligent anomaly detection approach is presented to minimize the weather forecasting problems that arise as a result of rapid urbanization and mass digitalization. The proposed solutions cover data processing at the edge of the IoT and include filtering out the missing, unnecessary or anomaly data that prevent the predictions from being more accurate and reliable from the data obtained through the sensors. Anomaly detection metrics of five different machine learning (ML) algorithms, including support vector classifier (SVC), Adaboost, logistic regression (LR), naive Bayes (NB) and random forest (RF), were also compared in the study. These algorithms were used to create a data stream using the time, temperature, pressure, humidity and other sensor-generated information.

3.
Sensors (Basel) ; 22(16)2022 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-36016078

RESUMO

Addressing the recent trend of the massive demand for resources and ubiquitous use for all citizens has led to the conceptualization of technologies such as the Internet of Things (IoT) and smart cities. Ubiquitous IoT connectivity can be achieved to serve both urban and underserved remote areas such as rural communities by deploying 5G mobile networks with Low Power Wide Area Network (LPWAN). The current architectures will not offer flexible connectivity to many IoT applications due to high service demand, data exchange, emerging technologies, and security challenges. Hence, this paper explores various architectures that consider a hybrid 5G-LPWAN-IoT and Smart Cities. This includes security challenges as well as endogenous security and solutions in 5G and LPWAN-IoT. The slicing of virtual networks using software-defined network (SDN)/network function virtualization (NFV) based on the different quality of service (QoS) to satisfy different services and quality of experience (QoE) is presented. Also, a strategy that considers the implementation of 5G jointly with Weightless-N (TVWS) technologies to reduce the cell edge interference is considered. Discussions on the need for ubiquity connectivity leveraging 5G and LPWAN-IoT are presented. In addition, future research directions are presented, including a unified 5G network and LPWAN-IoT architecture that will holistically support integration with emerging technologies and endogenous security for improved/secured smart cities and remote areas IoT applications. Finally, the use of LPWAN jointly with low earth orbit (LEO) satellites for ubiquitous IoT connectivity is advocated in this paper.


Assuntos
Internet das Coisas , Cidades , Confidencialidade
4.
Sensors (Basel) ; 22(6)2022 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-35336511

RESUMO

As a consequence of swiftly growing populations in the urban areas, larger quantities of solid waste also form rapidly. Since urban local bodies are found to be unable to manage this perilous situation effectively, there is a high probability of risks relative to the environment and public health. A sudden change is indispensable in the existing systems that are developed for the collection, transportation, and disposal of solid waste, which are entangled in turmoil. However, Smart sensors and wireless technology enable cyber-physical systems to automate solid waste management, which will revolutionize the industry. This work presents a comprehensive study on the evolution of automation approaches in solid waste management systems. This study is enhanced by dissecting the available literature in solid waste management with Radio Frequency Identification (RFID), Wireless Sensor Networks (WSN), and Internet of Things (IoT)-based approaches and analyzing each category with a typical architecture, respectively. In addition, various communication technologies adopted in the aforementioned categories are critically analyzed to identify the best choice for the deployment of trash bins. From the survey, it is inferred that IoT-based systems are superior to other design approaches, and LoRaWAN is identified as the preferred communication protocol for the automation of solid waste handling systems in urban areas. Furthermore, the critical open research issues on state-of-the-art solid waste handling systems are identified and future directions to address the same topic are suggested.


Assuntos
Dispositivo de Identificação por Radiofrequência , Gerenciamento de Resíduos , Saúde Pública , Resíduos Sólidos , Tecnologia sem Fio
5.
Sensors (Basel) ; 20(23)2020 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-33265899

RESUMO

The Internet of Things (IoT) is an emerging paradigm that enables many beneficial and prospective application areas, such as smart metering, smart homes, smart industries, and smart city architectures, to name but a few. These application areas typically comprise end nodes and gateways that are often interconnected by low power wide area network (LPWAN) technologies, which provide low power consumption rates to elongate the battery lifetimes of end nodes, low IoT device development/purchasing costs, long transmission range, and increased scalability, albeit at low data rates. However, most LPWAN technologies are often confronted with a number of physical (PHY) layer challenges, including increased interference, spectral inefficiency, and/or low data rates for which cognitive radio (CR), being a predominantly PHY layer solution, suffices as a potential solution. Consequently, in this article, we survey the potentials of integrating CR in LPWAN for IoT-based applications. First, we present and discuss a detailed list of different state-of-the-art LPWAN technologies; we summarize the most recent LPWAN standardization bodies, alliances, and consortia while emphasizing their disposition towards the integration of CR in LPWAN. We then highlight the concept of CR in LPWAN via a PHY-layer front-end model and discuss the benefits of CR-LPWAN for IoT applications. A number of research challenges and future directions are also presented. This article aims to provide a unique and holistic overview of CR in LPWAN with the intention of emphasizing its potential benefits.

6.
Sensors (Basel) ; 20(20)2020 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-33066336

RESUMO

Low power wide area network (LPWAN) is among the fastest growing networks in Internet of Things (IoT) technologies. Owing to varieties of outstanding features which include long range communication and low power consumption, LPWANs are fast becoming the most widely deployed connectivity standards in IoT domain. However, this promising network are exposed to various security and privacy threats and challenges. For reliable connectivity within networks, the security and privacy challenges need to be effectively addressed with proper mitigation protocol in place. In this paper, a comprehensive review on the security feature of LPWAN is presented. The paper mainly focuses on analyzing LPWAN's key cybersecurity architecture and it present a significant emphasis on how the LPWAN is highly attractive to intruders and attackers. This paper aims at summarizing recent research works on key LPWAN security challenges such as replay attack, denial-of-service attack, worm hole attack, and eavesdropping attack, the effect of the attacks, and most importantly the various approaches proposed in the literature for the attacks' mitigation. The paper concludes by highlighting major research gaps and future directions for the successful deployment of LPWAN.

7.
Sensors (Basel) ; 20(18)2020 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-32899454

RESUMO

Long-Range Wide Area Network (LoRaWAN) is a fast-growing communication system for Low Power Wide Area Networks (LPWAN) in the Internet of Things (IoTs) deployments. LoRaWAN is built to optimize LPWANs for battery lifetime, capacity, range, and cost. LoRaWAN employs an Adaptive Data Rate (ADR) scheme that dynamically optimizes data rate, airtime, and energy consumption. The major challenge in LoRaWAN is that the LoRa specification does not state how the network server must command end nodes pertaining rate adaptation. As a result, numerous ADR schemes have been proposed to cater for the many applications of IoT technology, the quality of service requirements, different metrics, and radio frequency (RF) conditions. This offers a challenge for the reliability and suitability of these schemes. This paper presents a comprehensive review of the research on ADR algorithms for LoRaWAN technology. First, we provide an overview of LoRaWAN network performance that has been explored and documented in the literature and then focus on recent solutions for ADR as an optimization approach to improve throughput, energy efficiency and scalability. We then distinguish the approaches used, highlight their strengths and drawbacks, and provide a comparison of these approaches. Finally, we identify some research gaps and future directions.

8.
Sensors (Basel) ; 19(6)2019 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-30901887

RESUMO

The overcrowding of the wireless space has triggered a strict competition for scare network resources. Therefore, there is a need for a dynamic spectrum access (DSA) technique that will ensure fair allocation of the available network resources for diverse network elements competing for the network resources. Spectrum handoff (SH) is a DSA technique through which cognitive radio (CR) promises to provide effective channel utilization, fair resource allocation, as well as reliable and uninterrupted real-time connection. However, SH may consume extra network resources, increase latency, and degrade network performance if the spectrum sensing technique used is ineffective and the channel selection strategy (CSS) is poorly implemented. Therefore, it is necessary to develop an SH policy that holistically considers the implementation of effective CSS, and spectrum sensing technique, as well as minimizes communication delays. In this work, two reinforcement learning (RL) algorithms are integrated into the CSS to perform channel selection. The first algorithm is used to evaluate the channel future occupancy, whereas the second algorithm is used to determine the channel quality in order to sort and rank the channels in candidate channel list (CCL). A method of masking linearly dependent and useless state elements is implemented to improve the convergence of the learning. Our approach showed a significant reduction in terms of latency and a remarkable improvement in throughput performance in comparison to conventional approaches.

9.
Sensors (Basel) ; 18(10)2018 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-30249061

RESUMO

In recent times, Wireless Sensor Networks (WSNs) are broadly applied in the Industrial Internet of Things (IIoT) in order to enhance the productivity and efficiency of existing and prospective manufacturing industries. In particular, an area of interest that concerns the use of WSNs in IIoT is the concept of sensor network virtualization and overlay networks. Both network virtualization and overlay networks are considered contemporary because they provide the capacity to create services and applications at the edge of existing virtual networks without changing the underlying infrastructure. This capability makes both network virtualization and overlay network services highly beneficial, particularly for the dynamic needs of IIoT based applications such as in smart industry applications, smart city, and smart home applications. Consequently, the study of both WSN virtualization and overlay networks has become highly patronized in the literature, leading to the growth and maturity of the research area. In line with this growth, this paper provides a review of the development made thus far concerning virtualized sensor networks, with emphasis on the application of overlay networks in IIoT. Principally, the process of virtualization in WSN is discussed along with its importance in IIoT applications. Different challenges in WSN are also presented along with possible solutions given by the use of virtualized WSNs. Further details are also presented concerning the use of overlay networks as the next step to supporting virtualization in shared sensor networks. Our discussion closes with an exposition of the existing challenges in the use of virtualized WSN for IIoT applications. In general, because overlay networks will be contributory to the future development and advancement of smart industrial and smart city applications, this review may be considered by researchers as a reference point for those particularly interested in the study of this growing field.

10.
Sensors (Basel) ; 17(5)2017 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-28471390

RESUMO

Wireless sensor networks (WSNs) are becoming increasingly popular with the advent of the Internet of things (IoT). Various real-world applications of WSNs such as in smart grids, smart farming and smart health would require a potential deployment of thousands or maybe hundreds of thousands of sensor nodes/actuators. To ensure proper working order and network efficiency of such a network of sensor nodes, an effective WSN management system has to be integrated. However, the inherent challenges of WSNs such as sensor/actuator heterogeneity, application dependency and resource constraints have led to challenges in implementing effective traditional WSN management. This difficulty in management increases as the WSN becomes larger. Software Defined Networking (SDN) provides a promising solution in flexible management WSNs by allowing the separation of the control logic from the sensor nodes/actuators. The advantage with this SDN-based management in WSNs is that it enables centralized control of the entire WSN making it simpler to deploy network-wide management protocols and applications on demand. This paper highlights some of the recent work on traditional WSN management in brief and reviews SDN-based management techniques for WSNs in greater detail while drawing attention to the advantages that SDN brings to traditional WSN management. This paper also investigates open research challenges in coming up with mechanisms for flexible and easier SDN-based WSN configuration and management.

11.
Heliyon ; 9(3): e13885, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36895404

RESUMO

The control of the open loop unstable systems with nonlinear structure is challenging work. In this paper, for the first time, we present a sand cat swarm optimization (SCSO) algorithm-based state feedback controller design for open-loop unstable systems. The SCSO algorithm is a newly proposed metaheuristic algorithm with an easy-to-implement structure that can efficiently find the optimal solution for optimization problems. The proposed SCSO-based state feedback controller can successfully optimize the control parameters with efficient convergence curve speed. In order to show the performance of the proposed method, three different nonlinear control systems such as an Inverted pendulum, a Furuta pendulum, and an Acrobat robot arm are considered. The control and optimization performances of the proposed SCSO algorithm are compared with well-known metaheuristic algorithms. The simulation results show that the proposed control method can either outperform the compared metaheuristic-based algorithms or have competitive results.

12.
Artigo em Inglês | MEDLINE | ID: mdl-35564763

RESUMO

Wireless Sensor Networks (WSNs) are increasingly deployed in Internet of Things (IoT) systems for applications such as smart transportation, telemedicine, smart health monitoring and fall detection systems for the elderly people. Given that huge amount of data, vital and critical information can be exchanged between the different parts of a WSN, good management and protection schemes are needed to ensure an efficient and secure operation of the WSN. To ensure an efficient management of WSNs, the Software-Defined Wireless Sensor Network (SDWSN) paradigm has been recently introduced in the literature. In the same vein, Intrusion Detection Systems, have been used in the literature to safeguard the security of SDWSN-based IoTs. In this paper, three popular Artificial Intelligence techniques (Decision Tree, Naïve Bayes, and Deep Artificial Neural Network) are trained to be deployed as anomaly detectors in IDSs. It is shown that an IDS using the Decision Tree-based anomaly detector yields the best performances metrics both in the binary classification and in the multinomial classification. Additionally, it was found that an IDS using the Naïve Bayes-based anomaly detector was only adapted for binary classification of intrusions in low memory capacity SDWSN-based IoT (e.g., wearable fitness tracker). Moreover, new state-of-the-art accuracy (binary classification) and F-scores (multinomial classification) were achieved by introducing an end-to-end feature engineering scheme aimed at obtaining 118 features from the 41 features of the Network Security Laboratory-Knowledge Discovery in Databases (NSL-KDD) dataset. The state-of-the-art accuracy was pushed to 0.999777 using the Decision Tree-based anomaly detector. Finally, it was found that the Deep Artificial Neural Network should be expected to become the next default anomaly detector in the light of its current performance metrics and the increasing abundance of training data.


Assuntos
Internet das Coisas , Idoso , Inteligência Artificial , Teorema de Bayes , Atenção à Saúde , Humanos , Software
13.
JMIR Rehabil Assist Technol ; 8(4): e29610, 2021 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-34779786

RESUMO

BACKGROUND: With the projected upsurge in the percentage of people with some form of disability, there has been a significant increase in the need for assistive mobility devices. However, for mobility aids to be effective, such devices should be adapted to the user's needs. This can be achieved by improving the confidence of the acquired information (interaction between the user, the environment, and the device) following design specifications. Therefore, there is a need for literature review on the adaptability of assistive mobility devices. OBJECTIVE: In this study, we aim to review the adaptability of assistive mobility devices and the role of the internet of medical things in terms of the acquired information for assistive mobility devices. We review internet-enabled assistive mobility technologies and non-internet of things (IoT) assistive mobility devices. These technologies will provide awareness of the status of adaptive mobility technology and serve as a source and reference regarding information to health care professionals and researchers. METHODS: We performed a literature review search on the following databases of academic references and journals: Google Scholar, ScienceDirect, Institute of Electrical and Electronics Engineers, Springer, and websites of assistive mobility and foundations presenting studies on assistive mobility found through a generic Google search (including the World Health Organization website). The following keywords were used: assistive mobility OR assistive robots, assistive mobility devices, internet-enabled assistive mobility technologies, IoT Framework OR IoT Architecture AND for Healthcare, assisted navigation OR autonomous navigation, mobility AND aids OR devices, adaptability of assistive technology, adaptive mobility devices, pattern recognition, autonomous navigational systems, human-robot interfaces, motor rehabilitation devices, perception, and ambient assisted living. RESULTS: We identified 13,286 results (excluding titles that were not relevant to this study). Then, through a narrative review, we selected 189 potential studies (189/13,286, 1.42%) from the existing literature on the adaptability of assistive mobility devices and IoT frameworks for assistive mobility and conducted a critical analysis. Of the 189 potential studies, 82 (43.4%) were selected for analysis after meeting the inclusion criteria. On the basis of the type of technologies presented in the reviewed articles, we proposed a categorization of the adaptability of smart assistive mobility devices in terms of their interaction with the user (user system interface), perception techniques, and communication and sensing frameworks. CONCLUSIONS: We discussed notable limitations of the reviewed literature studies. The findings revealed that an improvement in the adaptation of assistive mobility systems would require a reduction in training time and avoidance of cognitive overload. Furthermore, sensor fusion and classification accuracy are critical for achieving real-world testing requirements. Finally, the trade-off between cost and performance should be considered in the commercialization of these devices.

14.
Heliyon ; 7(1): e05936, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33490688

RESUMO

Currently, ensuring that power systems operate efficiently in stable and secure conditions has become a key challenge worldwide. Various unwanted events including injections and faults, especially within the generation and transmission domains are major causes of these instability menaces. The earlier operators can identify and accurately diagnose these unwanted events, the faster they can react and execute timely corrective measures to prevent large-scale blackouts and avoidable loss to lives and equipment. This paper presents a hybrid classification technique using support vector machine (SVM) with the evolutionary genetic algorithm (GA) model to detect and classify power system unwanted events in an accurate yet straightforward manner. In the proposed classification approach, the features of two large dimensional synchrophasor datasets are initially reduced using principal component analysis before they are weighted in their relevance and the dominant weights are heuristically identified using the genetic algorithm to boost classification results. Consequently, the weighted and dominant selected features by the GA are utilized to train the modelled linear SVM and radial basis function kernel SVM in classifying unwanted events. The performance of the proposed GA-SVM model was evaluated and compared with other models using key classification metrics. The high classification results from the proposed model validates the proposed method. The experimental results indicate that the proposed model can achieve an overall improvement in the classification rate of unwanted events in power systems and it showed that the application of the GA as the feature weighting tool offers significant improvement on classification performances.

15.
IEEE Access ; 8: 186821-186839, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-34786294

RESUMO

The novel coronavirus (COVID-19), declared by the World Health Organization (WHO) as a global pandemic, has brought with it changes to the general way of life. Major sectors of the world industry and economy have been affected and the Internet of Things (IoT) management and framework is no exception in this regard. This article provides an up to date survey on how a global pandemic such as COVID-19 has affected the world of IoT technologies. It looks at the contributions that IoT and associated sensor technologies have made towards virus tracing, tracking and spread mitigation. The associated challenges of deployment of sensor hardware in the face of a rapidly spreading pandemic have been looked into as part of this review article. The effects of a global pandemic on the evolution of IoT architectures and management have also been addressed, leading to the likely outcomes on future IoT implementations. In general, this article provides an insight into the advancement of sensor-based E-health towards the management of global pandemics. It also answers the question of how a global virus pandemic has shaped the future of IoT networks.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA