Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 118
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Immunity ; 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38754432

RESUMO

The pancreatic islet microenvironment is highly oxidative, rendering ß cells vulnerable to autoinflammatory insults. Here, we examined the role of islet resident macrophages in the autoimmune attack that initiates type 1 diabetes. Islet macrophages highly expressed CXCL16, a chemokine and scavenger receptor for oxidized low-density lipoproteins (OxLDLs), regardless of autoimmune predisposition. Deletion of Cxcl16 in nonobese diabetic (NOD) mice suppressed the development of autoimmune diabetes. Mechanistically, Cxcl16 deficiency impaired clearance of OxLDL by islet macrophages, leading to OxLDL accumulation in pancreatic islets and a substantial reduction in intra-islet transitory (Texint) CD8+ T cells displaying proliferative and effector signatures. Texint cells were vulnerable to oxidative stress and diminished by ferroptosis; PD-1 blockade rescued this population and reversed diabetes resistance in NOD.Cxcl16-/- mice. Thus, OxLDL scavenging in pancreatic islets inadvertently promotes differentiation of pathogenic CD8+ T cells, presenting a paradigm wherein tissue homeostasis processes can facilitate autoimmune pathogenesis in predisposed individuals.

2.
Immunity ; 54(7): 1561-1577.e7, 2021 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-34102100

RESUMO

A common metabolic alteration in the tumor microenvironment (TME) is lipid accumulation, a feature associated with immune dysfunction. Here, we examined how CD8+ tumor infiltrating lymphocytes (TILs) respond to lipids within the TME. We found elevated concentrations of several classes of lipids in the TME and accumulation of these in CD8+ TILs. Lipid accumulation was associated with increased expression of CD36, a scavenger receptor for oxidized lipids, on CD8+ TILs, which also correlated with progressive T cell dysfunction. Cd36-/- T cells retained effector functions in the TME, as compared to WT counterparts. Mechanistically, CD36 promoted uptake of oxidized low-density lipoproteins (OxLDL) into T cells, and this induced lipid peroxidation and downstream activation of p38 kinase. Inhibition of p38 restored effector T cell functions in vitro, and resolution of lipid peroxidation by overexpression of glutathione peroxidase 4 restored functionalities in CD8+ TILs in vivo. Thus, an oxidized lipid-CD36 axis promotes intratumoral CD8+ T cell dysfunction and serves as a therapeutic avenue for immunotherapies.


Assuntos
Antígenos CD36/metabolismo , Linfócitos T CD8-Positivos/metabolismo , Peroxidação de Lipídeos/fisiologia , Lipoproteínas LDL/metabolismo , Neoplasias/metabolismo , Receptores Depuradores/metabolismo , Animais , Transporte Biológico/fisiologia , Linhagem Celular Tumoral , Células HEK293 , Humanos , Leucócitos Mononucleares/metabolismo , Linfócitos do Interstício Tumoral/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Microambiente Tumoral/fisiologia
3.
Immunity ; 48(5): 923-936.e4, 2018 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-29752065

RESUMO

The development of T cell tolerance in the thymus requires the presentation of host proteins by multiple antigen-presenting cell (APC) types. However, the importance of transferring host antigens from transcription factor AIRE-dependent medullary thymic epithelial cells (mTECs) to bone marrow (BM) APCs is unknown. We report that antigen was primarily transferred from mTECs to CD8α+ dendritic cells (DCs) and showed that CD36, a scavenger receptor selectively expressed on CD8α+ DCs, mediated the transfer of cell-surface, but not cytoplasmic, antigens. The absence of CD8α+ DCs or CD36 altered thymic T cell selection, as evidenced by TCR repertoire analysis and the loss of allo-tolerance in murine allogeneic BM transplantation (allo-BMT) studies. Decreases in these DCs and CD36 expression in peripheral blood of human allo-BMT patients correlated with graft-versus-host disease. Our findings suggest that CD36 facilitates transfer of mTEC-derived cell-surface antigen on CD8α+ DCs to promote tolerance to host antigens during homeostasis and allo-BMT.


Assuntos
Antígenos de Superfície/imunologia , Antígenos CD36/imunologia , Tolerância Imunológica/imunologia , Receptores de Antígenos de Linfócitos T/imunologia , Linfócitos T Reguladores/imunologia , Timo/imunologia , Animais , Antígenos de Superfície/metabolismo , Transplante de Medula Óssea , Antígenos CD36/genética , Antígenos CD36/metabolismo , Antígenos CD8/imunologia , Antígenos CD8/metabolismo , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Células Epiteliais/imunologia , Células Epiteliais/metabolismo , Camundongos Endogâmicos BALB C , Camundongos Knockout , Camundongos Transgênicos , Receptores de Antígenos de Linfócitos T/metabolismo , Linfócitos T Reguladores/metabolismo , Timo/metabolismo , Transplante Homólogo
4.
Annu Rev Physiol ; 85: 317-337, 2023 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-36347219

RESUMO

Long-chain fatty acids (FAs) are components of plasma membranes and an efficient fuel source and also serve as metabolic regulators through FA signaling mediated by membrane FA receptors. Impaired tissue FA uptake has been linked to major complications of obesity, including insulin resistance, cardiovascular disease, and type 2 diabetes. Fatty acid interactions with a membrane receptor and the initiation of signaling can modify pathways related to nutrient uptake and processing, cell proliferation or differentiation, and secretion of bioactive factors. Here, we review the major membrane receptors involved in FA uptake and FA signaling. We focus on two types of membrane receptors for long-chain FAs: CD36 and the G protein-coupled FA receptors FFAR1 and FFAR4. We describe key signaling pathways and metabolic outcomes for CD36, FFAR1, and FFAR4 and highlight the parallels that provide insight into FA regulation of cell function.


Assuntos
Diabetes Mellitus Tipo 2 , Humanos , Transdução de Sinais/fisiologia , Receptores Acoplados a Proteínas G/metabolismo , Ácidos Graxos/metabolismo , Membrana Celular/metabolismo , Antígenos CD36/metabolismo
5.
Nat Immunol ; 15(9): 846-55, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25086775

RESUMO

Alternative (M2) activation of macrophages driven via the α-chain of the receptor for interleukin 4 (IL-4Rα) is important for immunity to parasites, wound healing, the prevention of atherosclerosis and metabolic homeostasis. M2 polarization is dependent on fatty acid oxidation (FAO), but the source of the fatty acids that support this metabolic program has not been clear. We found that the uptake of triacylglycerol substrates via the scavenger receptor CD36 and their subsequent lipolysis by lysosomal acid lipase (LAL) was important for the engagement of elevated oxidative phosphorylation, enhanced spare respiratory capacity (SRC), prolonged survival and expression of genes that together define M2 activation. Inhibition of lipolysis suppressed M2 activation during infection with a parasitic helminth and blocked protective responses to this pathogen. Our findings delineate a critical role for cell-intrinsic lysosomal lipolysis in M2 activation.


Assuntos
Antígenos CD36/imunologia , Ácidos Graxos/metabolismo , Interleucina-4/imunologia , Lipólise/imunologia , Lisossomos/imunologia , Ativação de Macrófagos/imunologia , Macrófagos/imunologia , Fosforilação Oxidativa , Transdução de Sinais/imunologia , Esterol Esterase/imunologia , Animais , Respiração Celular , Helmintíase Animal/imunologia , Humanos , Camundongos , Consumo de Oxigênio , Receptores de Interleucina-4/imunologia , Transcriptoma
6.
Proc Natl Acad Sci U S A ; 118(18)2021 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-33903257

RESUMO

The role of integrins, in particular αv integrins, in regulating insulin resistance is incompletely understood. We have previously shown that the αvß5 integrin ligand milk fat globule epidermal growth factor like 8 (MFGE8) regulates cellular uptake of fatty acids. In this work, we evaluated the impact of MFGE8 on glucose homeostasis. We show that acute blockade of the MFGE8/ß5 pathway enhances while acute augmentation dampens insulin-stimulated glucose uptake. Moreover, we find that insulin itself induces cell-surface enrichment of MFGE8 in skeletal muscle, which then promotes interaction between the αvß5 integrin and the insulin receptor leading to dampening of skeletal-muscle insulin receptor signaling. Blockade of the MFGE8/ß5 pathway also enhances hepatic insulin sensitivity. Our work identifies an autoregulatory mechanism by which insulin-stimulated signaling through its cognate receptor is terminated through up-regulation of MFGE8 and its consequent interaction with the αvß5 integrin, thereby establishing a pathway that can potentially be targeted to improve insulin sensitivity.


Assuntos
Antígenos de Superfície/genética , Resistência à Insulina/genética , Insulina/genética , Proteínas do Leite/genética , Receptores de Vitronectina/genética , Animais , Antígenos CD/genética , Ácidos Graxos/genética , Ácidos Graxos/metabolismo , Glucose/metabolismo , Glicolipídeos/genética , Glicoproteínas/genética , Homeostase/genética , Humanos , Integrina alfaVbeta3/genética , Gotículas Lipídicas , Camundongos , Músculo Esquelético/metabolismo , Receptor de Insulina/genética , Transdução de Sinais/genética
7.
Circ Res ; 128(3): 433-450, 2021 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-33539224

RESUMO

Lipid uptake and metabolism are central to the function of organs such as heart, skeletal muscle, and adipose tissue. Although most heart energy derives from fatty acids (FAs), excess lipid accumulation can cause cardiomyopathy. Similarly, high delivery of cholesterol can initiate coronary artery atherosclerosis. Hearts and arteries-unlike liver and adrenals-have nonfenestrated capillaries and lipid accumulation in both health and disease requires lipid movement from the circulation across the endothelial barrier. This review summarizes recent in vitro and in vivo findings on the importance of endothelial cell receptors and uptake pathways in regulating FAs and cholesterol uptake in normal physiology and cardiovascular disease. We highlight clinical and experimental data on the roles of ECs in lipid supply to tissues, heart, and arterial wall in particular, and how this affects organ metabolism and function. Models of FA uptake into ECs suggest that receptor-mediated uptake predominates at low FA concentrations, such as during fasting, whereas FA uptake during lipolysis of chylomicrons may involve paracellular movement. Similarly, in the setting of an intact arterial endothelial layer, recent and historic data support a role for receptor-mediated processes in the movement of lipoproteins into the subarterial space. We conclude with thoughts on the need to better understand endothelial lipid transfer for fuller comprehension of the pathophysiology of hyperlipidemia, and lipotoxic diseases such as some forms of cardiomyopathy and atherosclerosis.


Assuntos
Colesterol/metabolismo , Células Endoteliais/metabolismo , Proteínas de Transporte de Ácido Graxo/metabolismo , Ácidos Graxos/metabolismo , Transtornos do Metabolismo dos Lipídeos/metabolismo , Transcitose , Animais , Antígenos CD36/metabolismo , Quilomícrons/metabolismo , Humanos , Transtornos do Metabolismo dos Lipídeos/patologia , Lipólise , Tamanho da Partícula
9.
Diabetologia ; 63(3): 611-623, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31873788

RESUMO

AIMS/HYPOTHESIS: Prediabetes is associated with postprandial hypertriacylglycerolaemia. Resistance exercise acutely lowers postprandial plasma triacylglycerol (TG); however, the changes in lipid metabolism that mediate this reduction are poorly understood. The aim of this study was to identify the constitutive metabolic mechanisms underlying the changes in postprandial lipid metabolism after resistance exercise in obese men with prediabetes. METHODS: We evaluated the effect of a single bout of whole-body resistance exercise (seven exercises, three sets, 10-12 repetitions at 80% of one-repetition maximum) on postprandial lipid metabolism in ten middle-aged (50 ± 9 years), overweight/obese (BMI: 33 ± 3 kg/m2), sedentary men with prediabetes (HbA1c >38 but <48 mmol/mol [>5.7% but <6.5%]), or fasting plasma glucose >5.6 mmol/l but <7.0 mmol/l or 2 h OGTT glucose >7.8 mmol/l but <11.1 mmol/l). We used a randomised, crossover design with a triple-tracer mixed meal test (ingested [(13C4)3]tripalmitin, i.v. [U-13C16]palmitate and [2H5]glycerol) to evaluate chylomicron-TG and total triacylglycerol-rich lipoprotein (TRL)-TG kinetics. We used adipose tissue and skeletal muscle biopsies to evaluate the expression of genes regulating lipolysis and lipid oxidation, skeletal muscle respirometry to evaluate oxidative capacity, and indirect calorimetry to assess whole-body lipid oxidation. RESULTS: The single bout of resistance exercise reduced the lipaemic response to a mixed meal in obese men with prediabetes without changing chylomicron-TG or TRL-TG fractional clearance rates. However, resistance exercise reduced endogenous and meal-derived fatty acid incorporation into chylomicron-TG and TRL-TG. Resistance exercise also increased whole-body lipid oxidation, skeletal muscle mitochondrial respiration, oxidative gene expression in skeletal muscle, and the expression of key lipolysis genes in adipose tissue. CONCLUSIONS/INTERPRETATION: A single bout of resistance exercise improves postprandial lipid metabolism in obese men with prediabetes, which may mitigate the risk for cardiovascular disease and type 2 diabetes.


Assuntos
Metabolismo dos Lipídeos/fisiologia , Obesidade/terapia , Sobrepeso/terapia , Período Pós-Prandial/fisiologia , Estado Pré-Diabético/terapia , Treinamento Resistido , Adulto , Idoso , Quilomícrons/sangue , Quilomícrons/metabolismo , Ácidos Graxos não Esterificados/sangue , Ácidos Graxos não Esterificados/metabolismo , Humanos , Resistência à Insulina/fisiologia , Lipoproteínas VLDL/sangue , Lipoproteínas VLDL/metabolismo , Masculino , Pessoa de Meia-Idade , Músculo Esquelético/metabolismo , Obesidade/complicações , Obesidade/metabolismo , Sobrepeso/complicações , Sobrepeso/metabolismo , Estado Pré-Diabético/complicações , Estado Pré-Diabético/metabolismo , Treinamento Resistido/métodos , Resultado do Tratamento , Triglicerídeos/sangue , Triglicerídeos/metabolismo
10.
Circulation ; 138(3): 305-315, 2018 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-30012703

RESUMO

Lipid droplets (LDs) are distinct and dynamic organelles that affect the health of cells and organs. Much progress has been made in understanding how these structures are formed, how they interact with other cellular organelles, how they are used for storage of triacylglycerol in adipose tissue, and how they regulate lipolysis. Our understanding of the biology of LDs in the heart and vascular tissue is relatively primitive in comparison with LDs in adipose tissue and liver. The National Heart, Lung, and Blood Institute convened a working group to discuss how LDs affect cardiovascular diseases. The goal of the working group was to examine the current state of knowledge on the cell biology of LDs, including current methods to study them in cells and organs and reflect on how LDs influence the development and progression of cardiovascular diseases. This review summarizes the working group discussion and recommendations on research areas ripe for future investigation that will likely improve our understanding of atherosclerosis and heart function.


Assuntos
Doenças Cardiovasculares/metabolismo , Gotículas Lipídicas/metabolismo , Miocárdio/metabolismo , Animais , Doenças Cardiovasculares/genética , Conferências para Desenvolvimento de Consenso de NIH como Assunto , Modelos Animais de Doenças , Interação Gene-Ambiente , Humanos , Metabolismo dos Lipídeos , National Heart, Lung, and Blood Institute (U.S.) , Estados Unidos
11.
Physiol Rev ; 92(3): 1061-85, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22811425

RESUMO

Intestinal lipid transport plays a central role in fat homeostasis. Here we review the pathways regulating intestinal absorption and delivery of dietary and biliary lipid substrates, principally long-chain fatty acid, cholesterol, and other sterols. We discuss the regulation and functions of CD36 in fatty acid absorption, NPC1L1 in cholesterol absorption, as well as other lipid transporters including FATP4 and SRB1. We discuss the pathways of intestinal sterol efflux via ABCG5/G8 and ABCA1 as well as the role of the small intestine in high-density lipoprotein (HDL) biogenesis and reverse cholesterol transport. We review the pathways and genetic regulation of chylomicron assembly, the role of dominant restriction points such as microsomal triglyceride transfer protein and apolipoprotein B, and the role of CD36, l-FABP, and other proteins in formation of the prechylomicron complex. We will summarize current concepts of regulated lipoprotein secretion (including HDL and chylomicron pathways) and include lessons learned from families with genetic mutations in dominant pathways (i.e., abetalipoproteinemia, chylomicron retention disease, and familial hypobetalipoproteinemia). Finally, we will provide an integrative view of intestinal lipid homeostasis through recent findings on the role of lipid flux and fatty acid signaling via diverse receptor pathways in regulating absorption and production of satiety factors.


Assuntos
Gorduras na Dieta/metabolismo , Mucosa Intestinal/metabolismo , Metabolismo dos Lipídeos , Animais , Ácidos Graxos/metabolismo , Homeostase , Humanos , Absorção Intestinal , Metabolismo dos Lipídeos/genética , Erros Inatos do Metabolismo Lipídico/genética , Erros Inatos do Metabolismo Lipídico/metabolismo , Lipoproteínas/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Resposta de Saciedade , Transdução de Sinais
12.
Nature ; 484(7394): 333-8, 2012 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-22466288

RESUMO

The prevalence of obesity and type 2 diabetes is increasing worldwide and threatens to shorten lifespan. Impaired insulin action in peripheral tissues is a major pathogenic factor. Insulin stimulates glucose uptake in adipose tissue through the GLUT4 (also known as SLC2A4) glucose transporter, and alterations in adipose tissue GLUT4 expression or function regulate systemic insulin sensitivity. Downregulation of human and mouse adipose tissue GLUT4 occurs early in diabetes development. Here we report that adipose tissue GLUT4 regulates the expression of carbohydrate-responsive-element-binding protein (ChREBP; also known as MLXIPL), a transcriptional regulator of lipogenic and glycolytic genes. Furthermore, adipose ChREBP is a major determinant of adipose tissue fatty acid synthesis and systemic insulin sensitivity. We find a new mechanism for glucose regulation of ChREBP: glucose-mediated activation of the canonical ChREBP isoform (ChREBP-α) induces expression of a novel, potent isoform (ChREBP-ß) that is transcribed from an alternative promoter. ChREBP-ß expression in human adipose tissue predicts insulin sensitivity, indicating that it may be an effective target for treating diabetes.


Assuntos
Tecido Adiposo/metabolismo , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Glucose/metabolismo , Proteínas Nucleares/metabolismo , Fatores de Transcrição/metabolismo , Adipócitos/metabolismo , Tecido Adiposo/citologia , Tecido Adiposo/patologia , Adiposidade , Animais , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/química , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/genética , Glicemia/metabolismo , Índice de Massa Corporal , Peso Corporal , Células Cultivadas , Estudos de Coortes , Estudos Transversais , Diabetes Mellitus/sangue , Diabetes Mellitus/genética , Diabetes Mellitus/metabolismo , Feminino , Regulação da Expressão Gênica/genética , Genótipo , Glucose/farmacologia , Intolerância à Glucose/genética , Transportador de Glucose Tipo 4/biossíntese , Transportador de Glucose Tipo 4/genética , Transportador de Glucose Tipo 4/metabolismo , Homeostase/genética , Humanos , Insulina/metabolismo , Insulina/farmacologia , Resistência à Insulina/genética , Lipogênese , Masculino , Camundongos , Camundongos Knockout , Dados de Sequência Molecular , Proteínas Nucleares/química , Proteínas Nucleares/deficiência , Proteínas Nucleares/genética , Obesidade/genética , Obesidade/metabolismo , Regiões Promotoras Genéticas/genética , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Fatores de Transcrição/química , Fatores de Transcrição/deficiência , Fatores de Transcrição/genética
13.
J Lipid Res ; 58(8): 1692-1701, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28634191

RESUMO

The scavenger receptor and multiligand transporter CD36 functions to promote cellular free fatty acid uptake and regulates aspects of both hepatic and intestinal cholesterol metabolism. However, the role of CD36 in regulating canalicular and biliary cholesterol transport and secretion is unknown. Here, we show that germline Cd36 knockout (KO) mice are protected against lithogenic diet (LD)-induced gallstones compared with congenic (C57BL6/J) controls. Cd36 KO mice crossed into congenic L-Fabp KO mice (DKO mice) demonstrated protection against LD-induced gallstones, reversing the susceptibility phenotype observed in L-Fabp KO mice. DKO mice demonstrated reduced biliary cholesterol secretion and a shift into more hydrophophilic bile acid species, without changes in either BA pool size or fecal excretion. In addition, we found that the mean and maximum force of gallbladder contraction was increased in germline Cd36 KO mice, and gallbladder lipid content was reduced compared with wild-type controls. Finally, whereas germline Cd36 KO mice were protected against LD-induced gallstones, neither liver- nor intestine-specific Cd36 KO mice were protected. Taken together, our findings show that CD36 plays an important role in modifying gallstone susceptibility in mice, at least in part by altering biliary lipid composition, but also by promoting gallbladder contractility.


Assuntos
Antígenos CD36/deficiência , Antígenos CD36/genética , Dieta/efeitos adversos , Cálculos Biliares/genética , Animais , Ácidos e Sais Biliares/química , Ácidos e Sais Biliares/metabolismo , Colesterol/metabolismo , Vesícula Biliar/metabolismo , Vesícula Biliar/fisiopatologia , Cálculos Biliares/etiologia , Cálculos Biliares/metabolismo , Cálculos Biliares/fisiopatologia , Técnicas de Inativação de Genes , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Contração Muscular/genética
14.
J Lipid Res ; 58(6): 1132-1142, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28404638

RESUMO

Lipid accumulation is a pathological feature of every type of kidney injury. Despite this striking histological feature, physiological accumulation of lipids in the kidney is poorly understood. We studied whether the accumulation of lipids in the fasted kidney are derived from lipoproteins or NEFAs. With overnight fasting, kidneys accumulated triglyceride, but had reduced levels of ceramide and glycosphingolipid species. Fasting led to a nearly 5-fold increase in kidney uptake of plasma [14C]oleic acid. Increasing circulating NEFAs using a ß adrenergic receptor agonist caused a 15-fold greater accumulation of lipid in the kidney, while mice with reduced NEFAs due to adipose tissue deficiency of adipose triglyceride lipase had reduced triglycerides. Cluster of differentiation (Cd)36 mRNA increased 2-fold, and angiopoietin-like 4 (Angptl4), an LPL inhibitor, increased 10-fold. Fasting-induced kidney lipid accumulation was not affected by inhibition of LPL with poloxamer 407 or by use of mice with induced genetic LPL deletion. Despite the increase in CD36 expression with fasting, genetic loss of CD36 did not alter fatty acid uptake or triglyceride accumulation. Our data demonstrate that fasting-induced triglyceride accumulation in the kidney correlates with the plasma concentrations of NEFAs, but is not due to uptake of lipoprotein lipids and does not involve the fatty acid transporter, CD36.


Assuntos
Jejum/sangue , Jejum/metabolismo , Ácidos Graxos não Esterificados/sangue , Rim/metabolismo , Triglicerídeos/metabolismo , Animais , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Oxirredução
15.
Biochim Biophys Acta ; 1861(10): 1442-9, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27004753

RESUMO

CD36 is a multifunctional immuno-metabolic receptor with many ligands. One of its physiological functions in the heart is the high-affinity uptake of long-chain fatty acids (FAs) from albumin and triglyceride rich lipoproteins. CD36 deletion markedly reduces myocardial FA uptake in rodents and humans. The protein is expressed on endothelial cells and cardiomyocytes and at both sites is likely to contribute to FA uptake by the myocardium. CD36 also transduces intracellular signaling events that influence how the FA is utilized and mediate metabolic effects of FA in the heart. CD36 transduced signaling regulates AMPK activation in a way that adjusts oxidation to FA uptake. It also impacts remodeling of myocardial phospholipids and eicosanoid production, effects exerted via influencing intracellular calcium (iCa(2+)) and the activation of phospholipases. Under excessive FA supply CD36 contributes to lipid accumulation, inflammation and dysfunction. However, it is also important for myocardial repair after injury via its contribution to immune cell clearance of apoptotic cells. This review describes recent progress regarding the multiple actions of CD36 in the heart and highlights those areas requiring future investigation. This article is part of a Special Issue entitled: Heart Lipid Metabolism edited by G.D. Lopaschuk.


Assuntos
Antígenos CD36/metabolismo , Cálcio/metabolismo , Inflamação/patologia , Lipídeos/química , Miocárdio/metabolismo , Cicatrização , Animais , Humanos
16.
J Lipid Res ; 57(4): 663-73, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26912395

RESUMO

Obesity induces accumulation of adipose tissue macrophages (ATMs), which contribute to both local and systemic inflammation and modulate insulin sensitivity. Adipocyte lipolysis during fasting and weight loss also leads to ATM accumulation, but without proinflammatory activation suggesting distinct mechanisms of ATM recruitment. We examined the possibility that specific lipid mediators with anti-inflammatory properties are released from adipocytes undergoing lipolysis to induce macrophage migration. In the present study, we showed that conditioned medium (CM) from adipocytes treated with forskolin to stimulate lipolysis can induce migration of RAW 264.7 macrophages. In addition to FFAs, lipolytic stimulation increased release of prostaglandin E2(PGE2) and prostaglandin D2(PGD2), reflecting cytosolic phospholipase A2α activation and enhanced cyclooxygenase (COX) 2 expression. Reconstituted medium with the anti-inflammatory PGE2potently induced macrophage migration while different FFAs and PGD2had modest effects. The ability of CM to induce macrophage migration was abolished by treating adipocytes with the COX2 inhibitor sc236 or by treating macrophages with the prostaglandin E receptor 4 antagonist AH23848. In fasted mice, macrophage accumulation in adipose tissue coincided with increases of PGE2levels and COX1 expression. Collectively, our data show that adipocyte-originated PGE2with inflammation suppressive properties plays a significant role in mediating ATM accumulation during lipolysis.


Assuntos
Adipócitos/metabolismo , Quimiotaxia , Dinoprostona/metabolismo , Lipólise , Macrófagos/citologia , Células 3T3-L1 , Animais , Ácido Araquidônico/metabolismo , Ciclo-Oxigenase 1/genética , Ciclo-Oxigenase 2/genética , Ativação Enzimática , Jejum , Regulação Enzimológica da Expressão Gênica , Fosfolipases A2 do Grupo IV/metabolismo , Camundongos , Células RAW 264.7
17.
J Lipid Res ; 57(12): 2176-2184, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27729386

RESUMO

Cluster of differentiation 36 (CD36) variants influence fasting lipids and risk of metabolic syndrome, but their impact on postprandial lipids, an independent risk factor for cardiovascular disease, is unclear. We determined the effects of SNPs within a ∼410 kb region encompassing CD36 and its proximal and distal promoters on chylomicron (CM) remnants and LDL particles at fasting and at 3.5 and 6 h following a high-fat meal (Genetics of Lipid Lowering Drugs and Diet Network study, n = 1,117). Five promoter variants associated with CMs, four with delayed TG clearance and five with LDL particle number. To assess mechanisms underlying the associations, we queried expression quantitative trait loci, DNA methylation, and ChIP-seq datasets for adipose and heart tissues that function in postprandial lipid clearance. Several SNPs that associated with higher serum lipids correlated with lower adipose and heart CD36 mRNA and aligned to active motifs for PPARγ, a major CD36 regulator. The SNPs also associated with DNA methylation sites that related to reduced CD36 mRNA and higher serum lipids, but mixed-model analyses indicated that the SNPs and methylation independently influence CD36 mRNA. The findings support contributions of CD36 SNPs that reduce adipose and heart CD36 RNA expression to inter-individual variability of postprandial lipid metabolism and document changes in CD36 DNA methylation that influence both CD36 expression and lipids.


Assuntos
Antígenos CD36/genética , Remanescentes de Quilomícrons/sangue , Lipoproteínas LDL/sangue , Adulto , Ilhas de CpG , Metilação de DNA , Feminino , Expressão Gênica , Frequência do Gene , Estudos de Associação Genética , Humanos , Masculino , Pessoa de Meia-Idade , Miocárdio/metabolismo , Especificidade de Órgãos , Polimorfismo de Nucleotídeo Único , Regiões Promotoras Genéticas , Triglicerídeos/sangue
18.
Gastroenterology ; 146(4): 995-1005, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24412488

RESUMO

BACKGROUND & AIMS: It is important to increase our understanding of gustatory detection of dietary fat and its contribution to fat preference. We studied the roles of the fat taste receptors CD36 and GPR120 and their interactions via Ca(2+) signaling in fungiform taste bud cells (TBC). METHODS: We measured Ca(2+) signaling in human TBC, transfected with small interfering RNAs against messenger RNAs encoding CD36 and GPR120 (or control small interfering RNAs). We also studied Ca(2+) signaling in TBC from CD36(-/-) mice and from wild-type lean and obese mice. Additional studies were conducted with mouse enteroendocrine cell line STC-1 that express GPR120 and stably transfected with human CD36. We measured release of serotonin and glucagon-like peptide-1 from human and mice TBC in response to CD36 and GPR120 activation. RESULTS: High concentrations of linoleic acid induced Ca(2+) signaling via CD36 and GPR120 in human and mice TBC, as well as in STC-1 cells, and low concentrations induced Ca(2+) signaling via only CD36. Incubation of human and mice fungiform TBC with lineoleic acid down-regulated CD36 and up-regulated GPR120 in membrane lipid rafts. Obese mice had decreased spontaneous preference for fat. Fungiform TBC from obese mice had reduced Ca(2+) and serotonin responses, but increased release of glucagon-like peptide-1, along with reduced levels of CD36 and increased levels of GPR120 in lipid rafts. CONCLUSIONS: CD36 and GPR120 have nonoverlapping roles in TBC signaling during orogustatory perception of dietary lipids; these are differentially regulated by obesity.


Assuntos
Antígenos CD36/metabolismo , Sinalização do Cálcio , Ácido Linoleico/metabolismo , Obesidade/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Papilas Gustativas/metabolismo , Paladar , Animais , Comportamento Animal , Antígenos CD36/deficiência , Antígenos CD36/genética , Linhagem Celular , Dieta Hiperlipídica , Modelos Animais de Doenças , Preferências Alimentares , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Humanos , Inositol 1,4,5-Trifosfato/metabolismo , Microdomínios da Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Obesidade/genética , Obesidade/psicologia , Interferência de RNA , Receptores Acoplados a Proteínas G/deficiência , Receptores Acoplados a Proteínas G/genética , Serotonina/metabolismo , Percepção Gustatória , Transfecção
19.
Biochem Biophys Res Commun ; 457(4): 520-5, 2015 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-25596128

RESUMO

Hypothermia can occur during fasting when thermoregulatory mechanisms, involving fatty acid (FA) utilization, are disturbed. CD36/FA translocase is a membrane protein which facilitates membrane transport of long-chain FA in the FA consuming heart, skeletal muscle (SkM) and adipose tissues. It also accelerates uptake of triglyceride-rich lipoprotein by brown adipose tissue (BAT) in a cold environment. In mice deficient for CD36 (CD36(-/-) mice), FA uptake is markedly reduced with a compensatory increase in glucose uptake in the heart and SkM, resulting in lower levels of blood glucose especially during fasting. However, the role of CD36 in thermogenic activity during fasting remains to be determined. In fasted CD36(-/-) mice, body temperature drastically decreased shortly after cold exposure. The hypothermia was accompanied by a marked reduction in blood glucose and in stores of triacylglycerols in BAT and of glycogen in glycolytic SkM. Biodistribution analysis using the FA analogue (125)I-BMIPP and the glucose analogue (18)F-FDG revealed that uptake of FA and glucose was severely impaired in BAT and glycolytic SkM in cold-exposed CD36(-/-) mice. Further, induction of the genes of thermogenesis in BAT was blunted in fasted CD36(-/-) mice after cold exposure. These findings strongly suggest that CD36(-/-) mice exhibit pronounced hypothermia after fasting due to depletion of energy storage in BAT and glycolytic SkM and to reduced supply of energy substrates to these tissues. Our study underscores the importance of CD36 for nutrient homeostasis to survive potentially life-threatening challenges, such as cold and starvation.


Assuntos
Antígenos CD36/metabolismo , Jejum , Ácidos Graxos/metabolismo , Estresse Fisiológico , Termogênese , Tecido Adiposo Marrom/metabolismo , Animais , Temperatura Corporal , Antígenos CD36/genética , Temperatura Baixa , Deleção de Genes , Glucose/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Músculo Esquelético/metabolismo
20.
Annu Rev Nutr ; 34: 281-303, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24850384

RESUMO

CD36 (cluster of differentiation 36) is a scavenger receptor that functions in high-affinity tissue uptake of long-chain fatty acids (FAs) and contributes under excessive fat supply to lipid accumulation and metabolic dysfunction. This review describes recent evidence regarding the CD36 FA binding site and a potential mechanism for FA transfer. It also presents the view that CD36 and FA signaling coordinate fat utilization, a view that is based on newly identified CD36 actions that involve oral fat perception, intestinal fat absorption, secretion of the peptides cholecystokinin and secretin, regulation of hepatic lipoprotein output, activation of beta oxidation by muscle, and regulation of the production of the FA-derived bioactive eicosanoids. Thus abnormalities of fat metabolism and the associated pathology might involve dysfunction of CD36-mediated signal transduction in addition to the changes in FA uptake.


Assuntos
Antígenos CD36/metabolismo , Quilomícrons/metabolismo , Gorduras na Dieta/metabolismo , Ácidos Graxos não Esterificados/metabolismo , Lipoproteínas VLDL/metabolismo , Modelos Biológicos , Transdução de Sinais , Animais , Sítios de Ligação , Transporte Biológico , Antígenos CD36/sangue , Antígenos CD36/química , Quilomícrons/sangue , Ácidos Graxos não Esterificados/sangue , Humanos , Lipoproteínas VLDL/sangue , Conformação Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA