Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Mol Vis ; 29: 274-288, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38222448

RESUMO

Purpose: The cystine/glutamate antiporter is involved in the export of intracellular glutamate in exchange for extracellular cystine. Glutamate is the main neurotransmitter in the retina and plays a key metabolic role as a major anaplerotic substrate in the tricarboxylic acid cycle to generate adenosine triphosphate (ATP). In addition, glutamate is also involved in the outer plexiform glutamate-glutamine cycle, which links photoreceptors and supporting Müller cells and assists in maintaining photoreceptor neurotransmitter supply. In this study, we investigated the role of xCT, the light chain subunit responsible for antiporter function, in glutamate pathways in the mouse retina using an xCT knockout mouse. As xCT is a glutamate exporter, we hypothesized that loss of xCT function may influence the presynaptic metabolism of photoreceptors and postsynaptic levels of glutamate. Methods: Retinas of C57BL/6J wild-type (WT) and xCT knockout (KO) mice of either sex were analyzed from 6 weeks to 12 months of age. Biochemical assays were used to determine the effect of loss of xCT on glycolysis and energy metabolism by measuring lactate dehydrogenase activity and ATP levels. Next, biochemical assays were used to measure whole-tissue glutamate and glutamine levels, while silver-intensified immunogold labeling was performed on 6-week and 9-month-old retinas to visualize and quantify the distribution of glutamate, glutamine, and related neurochemical substrates gamma-aminobutyric acid (GABA) and glycine in the different layers of the retina. Results: Biochemical analysis revealed that loss of xCT function did not alter the lactate dehydrogenase activity, ATP levels, or glutamate and glutamine contents in whole retinas in any age group. However, at 6 weeks of age, the xCT KO retinas revealed altered glutamate distribution compared with the age-matched WT retinas, with accumulation of glutamate in the photoreceptors and outer plexiform layer. In addition, at 6 weeks and 9 months of age, the xCT KO retinas also showed altered glutamine distribution compared with the WT retinas, with glutamine labeling significantly decreased in Müller cell bodies. No significant difference in GABA or glycine distribution were found between the WT and xCT KO retinas at 6 weeks or 9 months of age. Conclusion: Loss of xCT function results in glutamate metabolic disruption through the accumulation of glutamate in photoreceptors and a reduced uptake of glutamate by Müller cells, which in turn decreases glutamine production. These findings support the idea that xCT plays a role in the presynaptic metabolism of photoreceptors and postsynaptic levels of glutamate and derived neurotransmitters in the retina.


Assuntos
Ácido Glutâmico , Glutamina , Camundongos , Animais , Ácido Glutâmico/metabolismo , Glutamina/metabolismo , Cistina/metabolismo , Cistina/farmacologia , Camundongos Knockout , Antiporters/metabolismo , Camundongos Endogâmicos C57BL , Retina/metabolismo , Trifosfato de Adenosina/metabolismo , Ácido gama-Aminobutírico/metabolismo , Glicina/metabolismo , Neurotransmissores , Lactato Desidrogenases/metabolismo
2.
Vision (Basel) ; 8(2)2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38804347

RESUMO

The outward migration of ommin pigment granules from the bases to the tips of the photoreceptors in response to light has been reported in the retina of several (mostly coastal) squid species. Following exposure to light and then dark conditions, we collected and processed retinal tissue from juvenile specimens of a deep-sea oegopsid squid, Gonatus onyx. We aimed to determine whether the ommin pigment returns to baseline, and to investigate the presence of glutamate neurotransmitter signaling under both dark and light conditions. We confirmed the presence of ommin granules but observed variability in the return of pigment to the basal layer in dark conditions, as well as changes in glutamate distribution. These findings provide support for the migration of retinal ommin pigment granules as a mechanism for regulating incoming light.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA