RESUMO
OBJECTIVE: According to our previous findings, carriers of the C4B*Q0 genotype, which means zero or one copy of the C4B gene, which is located in the RCCX copy number variation region on chromosome 6, have a significantly shorter life-expectancy and higher risk of cardiovascular disease than non-carriers. We have postulated that the C4B*Q0 genotype is linked to variant(s) of the neighboring CYP21A2 gene encoding a steroid 21-hydroxylase with altered function. DESIGN: Single-center, observational, retrospective study. PATIENTS: Seventy-six patients with non-functional, benign adrenal incidentaloma. MEASUREMENTS: Serum cortisol, aldosterone, 17-hydroxyprogesterone, corticosterone and ACTH levels basally and after ACTH-stimulation, metyrapone or dexamethasone tests were determined. C4B gene copy number was quantified. RESULTS: The ratio of ACTH-stimulated and baseline cortisol concentrations was significantly higher (P = 0·001) in the group of patients carrying the C4B*Q0 genotype compared to the rest of the patients. This difference remained significant (P = 0·004) after adjustment for sex and age, as well as for tumor size. A significant (P = 0·018), adjusted difference between carriers and non-carriers was found also for ACTH-induced/basal aldosterone ratio. In C4B*Q0 carriers, metyrapone hardly reduced the serum cortisol level, while in non-carriers it induced a highly significant (P = 0·002) decrease. CONCLUSIONS: The C4B*Q0 genotype may be associated with hyperreactivity of the HPA axis (manifested as an increased responsiveness to ACTH-stimulation), probably through enhanced function of steroid 21-hydroxylase. Since hyperreactivity of the HPA axis is known to be associated with an increased risk of cardiovascular disease, our present findings may explain the increased cardiovascular morbidity and mortality of C4B*Q0 carriers.
Assuntos
Neoplasias das Glândulas Suprarrenais/sangue , Neoplasias das Glândulas Suprarrenais/genética , Hormônio Adrenocorticotrópico/sangue , Complemento C4b/genética , Hidrocortisona/sangue , 17-alfa-Hidroxiprogesterona/sangue , Idoso , Aldosterona/sangue , Corticosterona/sangue , Variações do Número de Cópias de DNA/genética , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Estudos RetrospectivosRESUMO
The glucocorticoid receptor (GR) plays a crucial role in inflammatory responses. GR has several isoforms, of which the most deeply studied are the GRα and GRß. Recently it has been suggested that in addition to its negative dominant effect on GRα, the GRß may have a GRα-independent transcriptional activity. The GRß isoform was found to be frequently overexpressed in various autoimmune diseases, including inflammatory bowel disease (IBD). In this study, we wished to test whether the gene expression profile found in a GRß overexpressing intestinal cell line (Caco-2GRß) might mimic the gene expression alterations found in patients with IBD. Whole genome microarray analysis was performed in both normal and GRß overexpressing Caco-2 cell lines with and without dexamethasone treatment. IBD-related genes were identified from a meta-analysis of 245 microarrays available in online microarray deposits performed on intestinal mucosa samples from patients with IBD and healthy individuals. The differentially expressed genes were further studied using in silico pathway analysis. Overexpression of GRß altered a large proportion of genes that were not regulated by dexamethasone suggesting that GRß may have a GRα-independent role in the regulation of gene expression. About 10% of genes differentially expressed in colonic mucosa samples from IBD patients compared to normal subjects were also detected in Caco-2 GRß intestinal cell line. Common genes are involved in cell adhesion and cell proliferation. Overexpression of GRß in intestinal cells may affect appropriate mucosal repair and intact barrier function. The proposed novel role of GRß in intestinal epithelium warrants further studies.
Assuntos
Doenças Inflamatórias Intestinais/genética , Mucosa Intestinal/fisiopatologia , Receptores de Glucocorticoides/genética , Células CACO-2/efeitos dos fármacos , Adesão Celular/genética , Movimento Celular/genética , Núcleo Celular/metabolismo , Proliferação de Células/genética , Colo/metabolismo , Colo/fisiopatologia , Dexametasona/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Doenças Inflamatórias Intestinais/fisiopatologia , Mucosa Intestinal/metabolismo , Receptores de Glucocorticoides/metabolismo , TranscriptomaRESUMO
OBJECTIVE: The type 1 and type 2 isoenzymes of the 11ß-hydroxysteroid dehydrogenase (HSD11B) play an important role in the prereceptor regulation of glucocorticoid bioavailability and action. The potential importance of gene variants coding HSD11B has not been previously evaluated in patients with endogenous hypercortisolism. The aim of the present study was to explore presumed associations between the 83,557insA variant of the HSD11B1 gene and circulating hormone concentrations, bone turnover and bone mineral density (BMD) in patients with endogenous Cushing's syndrome (CS). PATIENTS AND METHODS: Forty one patients with ACTH-producing pituitary adenomas (Cushing's disease-CD), 32 patients with cortisol-producing adrenal tumors (ACS) and 129 healthy control subjects were genotyped for the 83,557insA variant of the HSD11B1 gene using restriction fragment length analysis. BMD was measured by dual-energy X-ray absorptiometry. Serum cortisol, ACTH, osteocalcin (OC) and C-terminal crosslinks (CTX) of human collagen type I (C-telopeptide) were measured by electrochemiluminescence immunoassay. RESULTS: No statistically significant differences were found in the allelic frequencies of the 83,557insA polymorphism among patients with CD, ACS and healthy controls. Among all patients with CS, heterozygous carriers of the 83,557insA had significantly higher serum OC as compared to non-carriers. Patients with ACS carrying the 83,557insA variant had higher plasma ACTH concentrations compared to non-carriers. The 83,557insA variant failed to associate with BMD in patients and controls. CONCLUSIONS: Our present findings indicate that the 83,557insA variant of the HSD11B1 gene may influence serum markers of bone turnover, but not BMD in patients with endogenous Cushing's syndrome.