Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Anim Ecol ; 93(7): 836-848, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38741512

RESUMO

Climate change is altering the timing of seasonal events for many taxa. There is limited understanding of how northward/southward songbird migration follows or is limited by the latitudinal progression of seasonal transitions. Consistent environmental conditions that migrating birds encounter across latitudes likely represent or correlate with important resources or limiting factors for migration. We tested whether migratory passage-observed via radar-consistently tracked land surface variables and phenophases across latitudes in the US Central Flyway in both spring and fall. The daily temperatures, precipitation and vegetation greenness occurring on 10%, 50% and 90% cumulative passage dates changed substantially with latitude, indicating that most migrants experienced rapidly changing conditions as they headed north or south. Temperature did not limit the progression of migration in either season. Peak spring migration in the southern US occurred nearly 40 days after the spring green wave, the northward progression of vegetation growth, but nearly caught up to green-up at 48° N. Spring migration phenology may have evolved to prioritize earlier arrival for breeding. Across all latitudes, peak fall migration coincided with the same land surface phenophase, an interval of 26 days prior to dormancy onset. Migrants may rely on phenological events in vegetation during fall stopovers. Considering that (a) migratory passage tracked fall land surface phenology across latitudes at a continental scale, (b) previous studies at local scales have demonstrated the importance of fruit during fall migratory stopover and (c) fruiting phenology in North America is occurring later over time while fall migration is advancing, the potential for mismatch between fall fruiting and bird migration phenology urgently needs further investigation.


Assuntos
Migração Animal , Estações do Ano , Aves Canoras , Animais , Aves Canoras/fisiologia , Estados Unidos , Mudança Climática , Temperatura
2.
Landsc Ecol ; 39(4): 83, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38550967

RESUMO

Context: Artificial light at night (ALAN) is increasing worldwide, with many ecological effects. Aerial insectivores may benefit from foraging on insects congregating at light sources. However, ALAN could negatively impact them by increasing nest visibility and predation risk, especially for ground-nesting species like nightjars (Caprimulgidae). Objectives: We tested predictions based on these two alternative hypotheses, potential foraging benefits vs potential predation costs of ALAN, for two nightjar species in British Columbia: Common Nighthawks (Chordeiles minor) and Common Poorwills (Phalaenoptilus nuttallii). Methods: We modeled the relationship between ALAN and relative abundance using count data from the Canadian Nightjar Survey. We distinguished territorial from extra-territorial Common Nighthawks based on their wingboom behaviour. Results: We found limited support for the foraging benefit hypothesis: there was an increase in relative abundance of extra-territorial Common Nighthawks in areas with higher ALAN but only in areas with little to no urban land cover. Common Nighthawks' association with ALAN became negative in areas with 18% or more urban land cover. We found support for the nest predation hypothesis: the were strong negative associations with ALAN for both Common Poorwills and territorial Common Nighthawks. Conclusions: The positive effects of ALAN on foraging nightjars may be limited to species that can forage outside their nesting territory and to non-urban areas, while the negative effects of ALAN on nesting nightjars may persist across species and landscape contexts. Reducing light pollution in breeding habitat may be important for nightjars and other bird species that nest on the ground. Supplementary Information: The online version contains supplementary material available at 10.1007/s10980-024-01875-3.

3.
Trends Ecol Evol ; 39(6): 548-557, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38796352

RESUMO

Systematic evidence syntheses (systematic reviews and maps) summarize knowledge and are used to support decisions and policies in a variety of applied fields, from medicine and public health to biodiversity conservation. However, conducting these exercises in conservation is often expensive and slow, which can impede their use and hamper progress in addressing the current biodiversity crisis. With the explosive growth of large language models (LLMs) and other forms of artificial intelligence (AI), we discuss here the promise and perils associated with their use. We conclude that, when judiciously used, AI has the potential to speed up and hopefully improve the process of evidence synthesis, which can be particularly useful for underfunded applied fields, such as conservation science.


Assuntos
Inteligência Artificial , Biodiversidade , Conservação dos Recursos Naturais , Conservação dos Recursos Naturais/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA