RESUMO
Nigeria had a confirmed case of COVID-19 on February 28, 2020. On March 17, 2020, the Nigerian Government inaugurated the Presidential Task Force (PTF) on COVID-19 to coordinate the country's multisectoral intergovernmental response. The PTF developed the National COVID-19 Multisectoral Pandemic Response Plan as the blueprint for implementing the response plans. The PTF provided funding, coordination, and governance for the public health response and executed resource mobilization and social welfare support, establishing the framework for containment measures and economic reopening. Despite the challenges of a weak healthcare infrastructure, staff shortages, logistic issues, commodity shortages, currency devaluation, and varying state government cooperation, high-level multisectoral PTF coordination contributed to minimizing the effects of the pandemic through early implementation of mitigation efforts, supported by a strong collaborative partnership with bilateral, multilateral, and private-sector organizations. We describe the lessons learned from the PTF COVID-19 for future multisectoral public health response.
Assuntos
COVID-19 , Pandemias , Humanos , Pandemias/prevenção & controle , COVID-19/epidemiologia , SARS-CoV-2 , Nigéria/epidemiologia , Saúde PúblicaRESUMO
BACKGROUND: This work investigates the production of citric acid from cashew apple juice, an abundant waste in the processing of cashew, using a local strain of Aspergillus niger and the application of the citric acid as a coagulant for the production of soy cheese. Fungal isolates were obtained from a cashew plantation in Ogbomoso, Nigeria, using potato dextrose agar. Further screening was undertaken to determine the qualitative strength of acid production by the fungi on Czapek-Dox agar supplemented with bromocresol green, with the development of yellow zone taken as an indication of citric acid production. Thereafter, the best producing strain was cultivated in a cashew apple juice medium. RESULTS: Out of 150 fungal isolates generated from the cashew plantation, 92 (61.3%), 44 (29.3%) and 14 (9.3%) were obtained from cashew fruits, soil and cashew tree surfaces, respectively. Different strains of fungi isolated include Aspergillus niger, A. flavus, A. foetidus, A. heteromorphus, A. nidulans and A. viridinutans. The isolates produced yellow zonation of 0.4-5.5 cm on modified Czapek-Dox agar; the highest was observed for a strain of A. niger LCFS 5, which was identified using molecular tools. In the formulated cashew apple juice medium, the citric acid yield of LCFS 5 ranged 16.0-92.8 g/l with the peak obtained on the 10th day of fermentation. The citric acid produced was recovered using the double precipitation method with Ca(OH)2 and H2SO4 having ≈ 70% purity of citric acid on HPLC. The citric acid acted as a coagulant to produce soy cheese with 66.67% acceptability by panelists. CONCLUSION: This work has extended the frontiers of valorization of cashew waste by a strain of A. niger to produce citric acid in high yield, with potential application in food industries.