RESUMO
OBJECTIVE: Loss-of-function mutations in IGSF1 result in X-linked central congenital hypothyroidism (CeCH), occurring in isolation or associated with additional pituitary hormone deficits. Intrafamilial penetrance is highly variable and a minority of heterozygous females are also affected. We identified and characterized a novel IGSF1 mutation and investigated its associated phenotypes in a large Irish kindred. DESIGN, PATIENTS AND MEASUREMENTS: A novel hemizygous IGSF1 mutation was identified by direct sequencing in two brothers with CeCH, and its functional consequences were characterized in vitro. Genotype-phenotype correlations were investigated in the wider kindred. RESULTS: The mutant IGSF1 protein (c.2318T > C, p.L773P) exhibited decreased plasma membrane expression in vitro due to impaired trafficking from the endoplasmic reticulum. Ten hemizygous males and 11 heterozygous females exhibited characteristic endocrine deficits. Ireland operates a TSH-based CH screening programme, which does not detect CeCH; therefore, genetic ascertainment preceded biochemical diagnosis of moderate CH in five of seven boys as well as their 75-year-old grandfather. Clinical features potentially attributable to hypothyroidism were variable; normal free T3 (FT3) and low/low normal reverse T3 (rT3) concentrations suggested that preferential deiodination of FT4 to FT3 may help maintain tissue euthyroidism in some individuals. However, neonatal jaundice, delayed speech or growth, and obesity were observed in seven subjects in whom diagnosis was delayed. CONCLUSIONS: As observed with other IGSF1 mutations, p.L773P results in variably penetrant IGSF1 deficiency syndrome. Our observations emphasize the need for multi-generation genetic ascertainment in affected families, especially where TSH-based CH screening programmes may fail to detect CeCH at birth.
Assuntos
Hipotireoidismo Congênito/genética , Imunoglobulinas/genética , Proteínas de Membrana/genética , Mutação/genética , Adolescente , Adulto , Idoso , Criança , Pré-Escolar , Hipotireoidismo Congênito/sangue , Hipotireoidismo Congênito/diagnóstico , Feminino , Humanos , Lactente , Irlanda , Masculino , Pessoa de Meia-Idade , Tiroxina/sangue , Tri-Iodotironina/sangue , Adulto JovemRESUMO
BACKGROUND: Signaling through the T-cell receptor (TCR) is critical for T-cell development and function. Linker for activation of T cells (LAT) is a transmembrane adaptor signaling molecule that is part of the TCR complex and essential for T-cell development, as demonstrated by LAT-deficient mice, which show a complete lack of peripheral T cells. OBJECTIVE: We describe a pedigree affected by a severe combined immunodeficiency phenotype with absent T cells and normal B-cell and natural killer cell numbers. A novel homozygous frameshift mutation in the gene encoding for LAT was identified in this kindred. METHODS: Genetic, molecular, and functional analyses were used to identify and characterize the LAT defect. Clinical and immunologic analysis of patients was also performed and reported. RESULTS: Homozygosity mapping was used to identify potential defective genes. Sanger sequencing of the LAT gene showed a mutation that resulted in a premature stop codon and protein truncation leading to complete loss of function and loss of expression of LAT in the affected family members. We also demonstrate loss of LAT expression and lack of TCR signaling restoration in LAT-deficient cell lines reconstituted with a synthetic LAT gene bearing this severe combined immunodeficiency mutation. CONCLUSION: For the first time, the results of this study show that inherited LAT deficiency should be considered in patients with combined immunodeficiency with T-cell abnormalities.
Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas de Membrana/metabolismo , Receptores de Antígenos de Linfócitos T/metabolismo , Deleção de Sequência/genética , Imunodeficiência Combinada Severa/genética , Linfócitos T/fisiologia , Proteínas Adaptadoras de Transdução de Sinal/genética , Apoptose , Sinalização do Cálcio/genética , Diferenciação Celular , Consanguinidade , Feminino , Genótipo , Homozigoto , Humanos , Células Jurkat , Ativação Linfocitária , Masculino , Proteínas de Membrana/genética , Paquistão , Linhagem , Receptores de Antígenos de Linfócitos T/genética , Transgenes/genéticaRESUMO
The importance of NaV1.7 (encoded by SCN9A) in the regulation of pain sensing is exemplified by the heterogeneity of clinical phenotypes associated with its mutation. Gain-of-function mutations are typically pain-causing and have been associated with inherited erythromelalgia (IEM) and paroxysmal extreme pain disorder (PEPD). IEM is usually caused by enhanced NaV1.7 channel activation, whereas mutations that alter steady-state fast inactivation often lead to PEPD. In contrast, nonfunctional mutations in SCN9A are known to underlie congenital insensitivity to pain (CIP). Although well documented, the correlation between SCN9A genotypes and clinical phenotypes is still unclear. Here we report three families with novel SCN9A mutations. In a multiaffected dominant family with IEM, we found the heterozygous change L245 V. Electrophysiological characterization showed that this mutation did not affect channel activation but instead resulted in incomplete fast inactivation and a small hyperpolarizing shift in steady-state slow inactivation, characteristics more commonly associated with PEPD. In two compound heterozygous CIP patients, we found mutations that still retained functionality of the channels, with two C-terminal mutations (W1775R and L1831X) exhibiting a depolarizing shift in channel activation. Two mutations (A1236E and L1831X) resulted in a hyperpolarizing shift in steady-state fast inactivation. To our knowledge, these are the first descriptions of mutations with some retained channel function causing CIP. This study emphasizes the complex genotype-phenotype correlations that exist for SCN9A and highlights the C-terminal cytoplasmic region of NaV1.7 as a critical region for channel function, potentially facilitating analgesic drug development studies.
Assuntos
Eritromelalgia/genética , Ativação do Canal Iônico , Mutação de Sentido Incorreto , Canal de Sódio Disparado por Voltagem NAV1.7/metabolismo , Insensibilidade Congênita à Dor/genética , Dor/genética , Reto/anormalidades , Criança , Eritromelalgia/metabolismo , Feminino , Células HEK293 , Humanos , Masculino , Canal de Sódio Disparado por Voltagem NAV1.7/química , Canal de Sódio Disparado por Voltagem NAV1.7/genética , Dor/metabolismo , Insensibilidade Congênita à Dor/metabolismo , Linhagem , Fenótipo , Estrutura Terciária de Proteína , Reto/metabolismoRESUMO
We investigated three families whose offspring had extreme microcephaly at birth and profound mental retardation. Brain scans and postmortem data showed that affected individuals had brains less than 10% of expected size (≤10 standard deviation) and that in addition to a massive reduction in neuron production they displayed partially deficient cortical lamination (microlissencephaly). Other body systems were apparently unaffected and overall growth was normal. We found two distinct homozygous mutations of NDE1, c.83+1G>T (p.Ala29GlnfsX114) in a Turkish family and c.684_685del (p.Pro229TrpfsX85) in two families of Pakistani origin. Using patient cells, we found that c.83+1G>T led to the use of a novel splice site and to a frameshift after NDE1 exon 2. Transfection of tagged NDE1 constructs showed that the c.684_685del mutation resulted in a NDE1 that was unable to localize to the centrosome. By staining a patient-derived cell line that carried the c.83+1G>T mutation, we found that this endogeneously expressed mutated protein equally failed to localize to the centrosome. By examining human and mouse embryonic brains, we determined that NDE1 is highly expressed in neuroepithelial cells of the developing cerebral cortex, particularly at the centrosome. We show that NDE1 accumulates on the mitotic spindle of apical neural precursors in early neurogenesis. Thus, NDE1 deficiency causes both a severe failure of neurogenesis and a deficiency in cortical lamination. Our data further highlight the importance of the centrosome in multiple aspects of neurodevelopment.
Assuntos
Proteínas de Ciclo Celular/genética , Centrossomo/metabolismo , Córtex Cerebral/embriologia , Proteínas Associadas aos Microtúbulos/genética , Neurogênese , Animais , Córtex Cerebral/crescimento & desenvolvimento , Pré-Escolar , Análise Mutacional de DNA , Células Epiteliais/metabolismo , Éxons , Feminino , Ligação Genética , Células HeLa , Homozigoto , Humanos , Lactente , Masculino , Camundongos , Microcefalia/genética , Mutação , Células-Tronco Neurais/metabolismo , Neurônios , Fenótipo , Gravidez , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , TransfecçãoRESUMO
Mediterranean forests represent critical areas that are increasingly affected by the frequency of droughts and fires, anthropic activities and land use changes. Optical remote sensing data give access to several essential biodiversity variables, such as species traits (related to vegetation biophysical and biochemical composition), which can help to better understand the structure and functioning of these forests. However, their reliability highly depends on the scale of observation and the spectral configuration of the sensor. Thus, the objective of the SENTHYMED/MEDOAK experiment is to provide datasets from leaf to canopy scale in synchronization with remote sensing acquisitions obtained from multi-platform sensors having different spectral characteristics and spatial resolutions. Seven monthly data collections were performed between April and October 2021 (with a complementary one in June 2023) over two forests in the north of Montpellier, France, comprised of two oak endemic species with different phenological dynamics (evergreen: Quercus ilex and deciduous: Quercus pubescens) and a variability of canopy cover fractions (from dense to open canopy). These collections were coincident with satellite multispectral Sentinel-2 data and one with airborne hyperspectral AVIRIS-Next Generation data. In addition, satellite hyperspectral PRISMA and DESIS were also available for some dates. All these airborne and satellite data are provided from free online download websites. Eight datasets are presented in this paper from thirteen studied forest plots: (1) overstory and understory inventory, (2) 687 canopy plant area index from Li-COR plant canopy analyzers, (3) 1475 in situ spectral reflectances (oak canopy, trunk, grass, limestone, etc.) from ASD spectroradiometers, (4) 92 soil moistures and temperatures from IMKO and Campbell probes, (5) 747 leaf-clip optical data from SPAD and DUALEX sensors, (6) 2594 in-lab leaf directional-hemispherical reflectances and transmittances from ASD spectroradiometer coupled with an integrating sphere, (7) 747 in-lab measured leaf water and dry matter content, and additional leaf traits by inversion of the PROSPECT model and (8) UAV-borne LiDAR 3-D point clouds. These datasets can be useful for multi-scale and multi-temporal calibration/validation of high level satellite vegetation products such as species traits, for current and future imaging spectroscopic missions, and by fusing or comparing both multispectral and hyperspectral data. Other targeted applications can be forest 3-D modelling, biodiversity assessment, fire risk prevention and globally vegetation monitoring.
RESUMO
The antidiabetic effects of the methanol extract of the stem bark of Ceiba pentandra (Cp) have been demonstrated in various experimental models. Besides, this extract is rich in 8-formyl-7-hydroxy-5-isopropyl-2-methoxy-3-methyl-1,4-naphthaquinone, 2,4,6-Trimethoxyphenol and vavain. However, it remains unknown whether Cp can mitigate cardiometabolic syndrome (CMS). The present study assessed the curative properties of Cp against Monosodium Glutamate (MSG)-induced CMS in rats. Male neonate Wistar rats were intraperitoneally administered with MSG (4 mg/g/day) during the first 5 days of life (postnatal days 2-6). They were kept under standard breeding conditions up to 5 months of age for the development of CMS. Diseased animals were then orally treated with atorvastatin (80 mg/kg/d) or Cp (75 and 150 mg/kg/day) for 28 days during which food intake, body mass, blood pressure, heart rate, glucose, and insulin tolerance were monitored. Plasma and tissues were collected on day 29th to assess the lipid profile, oxidative stress, and inflammatory parameters. The histomorphology of the adipose tissue was also evaluated. Cp significantly (p < 0.001) reduced the obesogenic and lipid profiles, adipocyte size, blood pressure, and oxidative and inflammatory status in MSG-treated rats. Cp also ameliorated glucose (p < 0.05) and insulin sensitivities (p < 0.001) hence, reducing animals' cardiometabolic risk score (p < 0.001). The curative effect of Cp on cardiometabolic syndrome is related to its capacity to reduce oxidative stress, inflammation, dyslipidemia, and increase insulin sensitivity. These results demonstrate the potential of Cp as a good candidate for alternative treatment of CMS.
RESUMO
The CAMCATT-AI4GEO extensive field experiment took place in Toulouse, a city in the southwest of France, from 14th to 25th June 2021 (with complementary measurements performed on the 6 September 2021). Its main objective was the acquisition of a new reference dataset on an urban site to support the development and validation of data products from the future thermal infrared (TIR) satellite missions such as TRISHNA (CNES/ISRO), LSTM (ESA) and SBG (NASA). With their high spatial (between 30-60m) and temporal (2-3 days) resolutions, the future TIR satellite data will allow a better investigation of the urban climate at the neighbourhood scale. However, in order to validate the future products of these missions such as LST, air temperature, comfort index and Urban Heat Island (UHI), there is a need to accurately characterise the organisation of the city in terms of 3D geometry, spectral optical properties and both land surface temperature and emissivity (LST and LSE) at several scales. In this context, the CAMCATT-AI4GEO field campaign provides a set of airborne VISNIR-SWIR (Visible Near InfraRed - ShortWave InfraRed) hyperspectral imagery, multispectral thermal infrared (TIR) imagery and 3D LiDAR acquisitions, together with a variety of ground data collected, for some of them, simultaneously to the flight. The ground dataset includes surface reflectance measured spectrally with ASD spectroradiometers and in six spectral bands spreading from shortwave to thermal infrared and for two viewing angles with a SOC410-DHR handheld reflectometer. It is completed with LST and LSE retrieved from thermal infrared radiance acquired in six spectral bands with CIMEL radiometers. It also includes meteorological data coming from four radio soundings (one of which was taken during the flight), data routinely collected at the Blagnac airport reference station as well as air temperature and humidity acquired using instrumented cars following two different itineraries. In addition, a link is provided to access the data routinely collected by the network of weather stations set up by Toulouse Metropole in the city and its surroundings. This data paper describes this new reference urban dataset which can be useful for many applications such as calibration/validation of at-surface radiance, LST and LSE data products as well as higher level products such as air temperature or comfort index. It also provides valuable opportunities for other applications in urban climate studies, such as supporting the validation of microclimate models.
RESUMO
The complete inability to sense pain in an otherwise healthy individual is a very rare phenotype. In three consanguineous families from northern Pakistan, we mapped the condition as an autosomal-recessive trait to chromosome 2q24.3. This region contains the gene SCN9A, encoding the alpha-subunit of the voltage-gated sodium channel, Na(v)1.7, which is strongly expressed in nociceptive neurons. Sequence analysis of SCN9A in affected individuals revealed three distinct homozygous nonsense mutations (S459X, I767X and W897X). We show that these mutations cause loss of function of Na(v)1.7 by co-expression of wild-type or mutant human Na(v)1.7 with sodium channel beta(1) and beta(2) subunits in HEK293 cells. In cells expressing mutant Na(v)1.7, the currents were no greater than background. Our data suggest that SCN9A is an essential and non-redundant requirement for nociception in humans. These findings should stimulate the search for novel analgesics that selectively target this sodium channel subunit.
Assuntos
Insensibilidade Congênita à Dor/genética , Insensibilidade Congênita à Dor/fisiopatologia , Dor/genética , Dor/fisiopatologia , Canais de Sódio/genética , Canais de Sódio/metabolismo , Sequência de Bases , Linhagem Celular , Cromossomos Humanos Par 2/genética , Feminino , Humanos , Masculino , Dados de Sequência Molecular , Mutação/genética , Canal de Sódio Disparado por Voltagem NAV1.7 , Técnicas de Patch-Clamp , Linhagem , Fenótipo , Mapeamento Físico do Cromossomo , Canais de Sódio/químicaRESUMO
BACKGROUND: Nerve growth factor ß (NGFß) and tyrosine kinase receptor type A (TRKA) are a well studied neurotrophin/receptor duo involved in neuronal survival and differentiation. The only previously reported hereditary sensory neuropathy caused by an NGF mutation, c.661C>T (HSAN5), and the pathology caused by biallelic mutations in the TRKA gene (NTRK1) (HSAN4), share only some clinical features. A consanguineous Arab family, where five of the six children were completely unable to perceive pain, were mentally retarded, did not sweat, could not discriminate temperature, and had a chronic immunodeficiency, is reported here. The condition is linked to a new homozygous mutation in the NGF gene, c.[680C>A]+[681_682delGG]. METHODS: Genetic linkage and standard sequencing techniques were used to identify the causative gene. Using wild-type or mutant over-expression constructs transfected into PC12 and COS-7 cells, the cellular and molecular consequences of the mutations were investigated. RESULTS: The mutant gene produced a precursor protein V232fs that was unable to differentiate PC12 cells. V232fs was not secreted from cells as mature NGFß. CONCLUSIONS: Both the clinical and cellular data suggest that the c.[680C>A]+[681_682delGG] NGF mutation is a functional null. The HSAN5 phenotype is extended to encompass HSAN4-like characteristics. It is concluded that the HSAN4 and HSAN5 phenotypes are parts of a phenotypic spectrum caused by changes in the NGF/TRKA signalling pathway.
Assuntos
Neuropatias Hereditárias Sensoriais e Autônomas/genética , Neuropatias Hereditárias Sensoriais e Autônomas/patologia , Fator de Crescimento Neural/genética , Animais , Sequência de Bases , Western Blotting , Células COS , Chlorocebus aethiops , Mapeamento Cromossômico , Ensaio de Imunoadsorção Enzimática , Genótipo , Humanos , Dados de Sequência Molecular , Mutação/genética , Células PC12 , Linhagem , Ratos , Receptores Proteína Tirosina Quinases/genética , Receptor trkA/genética , Análise de Sequência de DNARESUMO
Congenital hypothyroidism (CH) due to dyshormonogenesis may occur due to mutations in any of the key genes involved in thyroid hormone biosynthesis (TG, TPO, DUOX2, DUOXA2, SLC5A5, IYD, SLC26A4 and SLC26A7). Mutations in the thyroglobulin gene (TG) are frequently associated with goiter, which may present fetally or neonatally, although a spectrum of phenotypes is reported. We present the case of a woman of Eritrean origin who presented in the third trimester of pregnancy in the early stages of labor. Ultrasound at presentation revealed a fetal neck swelling consistent with a goiter. Following delivery by Caesarian section with minimal respiratory support, the infant was found to be hypothyroid with undetectable serum levels of thyroglobulin. Sequencing of the TG revealed a homozygous donor splice site pathogenic variant (c.5686+1delG) not previously described in the literature. Levothyroxine treatment resulted in normal growth and psychomotor development. Goitrous CH with inappropriately low thyroglobulin has previously been reported in patients harbouring homozygous single nucleotide substitutions at the same TG donor splice site, which result in exon skipping and retention of malformed thyroglobulin by the endoplasmic reticulum. We conclude that the TG c.5686+1delG pathogenic variant is the likely basis for our patient's fetal goiter and CH, and that the clinical phenotype associated with TG c.5686+1delG is comparable to that seen with single nucleotide substitutions at the same site.
Assuntos
Hipotireoidismo Congênito , Doenças Fetais , Bócio , Hipotireoidismo Congênito/genética , Eritreia , Feminino , Bócio/genética , Humanos , Mutação , Nucleotídeos , Tireoglobulina/genéticaRESUMO
BACKGROUND: Primary HPV screening, due to its low specificity, requires an additional liquid-based cytology (LBC) triage test. However, even with LBC triage there has been a near doubling in the number of patients referred for colposcopy in recent years, the majority having low-grade disease. METHODS: To counter this, a triage test that generates a spatial map of the cervical surface at a molecular level has been developed which removes the subjectivity associated with LBC by facilitating identification of lesions in their entirety. 50 patients attending colposcopy were recruited to participate in a pilot study to evaluate the test. For each patient, cells were lifted from the cervix onto a membrane (cervical cell lift, CCL) and immunostained with a biomarker of precancerous cells, generating molecular maps of the cervical surface. These maps were analysed to detect high-grade lesions, and the results compared to the final histological diagnosis. FINDINGS: We demonstrated that spatial molecular mapping of the cervix has a sensitivity of 90% (95% CI 69-98) (positive predictive value 81% (95% CI 60-92)) for the detection of high-grade disease, and that AI-based analysis could aid disease detection through automated flagging of biomarker-positive cells. INTERPRETATION: Spatial molecular mapping of the CCL improved the rate of detection of high-grade disease in comparison to LBC, suggesting that this method has the potential to decisively identify patients with clinically relevant disease that requires excisional treatment. FUNDING: CRUK Early Detection Project award, Jordan-Singer BSCCP award, Addenbrooke's Charitable Trust, UK-MRC, Janssen Pharmaceuticals/Advanced Sterilisation Products, and NWO.
Assuntos
Infecções por Papillomavirus , Lesões Pré-Cancerosas , Displasia do Colo do Útero , Neoplasias do Colo do Útero , Colo do Útero , Detecção Precoce de Câncer/métodos , Feminino , Humanos , Papillomaviridae , Projetos Piloto , Lesões Pré-Cancerosas/diagnóstico , Triagem , Neoplasias do Colo do Útero/diagnóstico , Neoplasias do Colo do Útero/patologia , Esfregaço Vaginal/métodos , Displasia do Colo do Útero/diagnósticoRESUMO
The sodium-iodide symporter (NIS, SLC5A5) is expressed at the basolateral membrane of the thyroid follicular cell, and facilitates the thyroidal iodide uptake required for thyroid hormone biosynthesis. Biallelic loss-of-function mutations in NIS are a rare cause of dyshormonogenic congenital hypothyroidism. Affected individuals typically exhibit a normally sited, often goitrous thyroid gland, with absent uptake of radioiodine in the thyroid and other NIS-expressing tissues. We report a novel homozygous NIS mutation (c.1067 C>T, p.S356F) in four siblings from a consanguineous Indian kindred, presenting with significant hypothyroidism. Functional characterization of the mutant protein demonstrated impaired plasma membrane localization and cellular iodide transport.
Assuntos
Hipotireoidismo Congênito/genética , Mutação/genética , Simportadores/genética , Feminino , Humanos , Índia , Recém-NascidoRESUMO
The authors report the unexpected finding of three different nonsense mutations in two unrelated individuals with a diagnosis of autosomal recessive primary microcephaly. In each case one phenotypically normal parent was found to carry two of the nonsense mutations, presumably in cis. This finding of 'triple pathogenic mutations' is of unknown incidence but has significant implication for genetic counselling. A failure to detect all three mutations could result in both false positive and false negative diagnoses in other family members. Both of these potential problems can be avoided by always genotyping the parents.
Assuntos
Microcefalia/genética , Mutação , Proteínas do Tecido Nervoso/genética , Genes Recessivos , Humanos , Deficiência Intelectual/complicações , Microcefalia/complicaçõesRESUMO
SCN9Aencodes the voltage-gated sodium channel Na(v)1.7, a protein highly expressed in pain-sensing neurons. Mutations in SCN9A cause three human pain disorders: bi-allelic loss of function mutations result in Channelopathy-associated Insensitivity to Pain (CIP), whereas activating mutations cause severe episodic pain in Paroxysmal Extreme Pain Disorder (PEPD) and Primary Erythermalgia (PE). To date, all mutations in SCN9A that cause a complete inability to experience pain are protein truncating and presumably lead to no protein being produced. Here, we describe the identification and functional characterization of two novel non-truncating mutations in families with CIP: a homozygously-inherited missense mutation found in a consanguineous Israeli Bedouin family (Na(v)1.7-R896Q) and a five amino acid in-frame deletion found in a sporadic compound heterozygote (Na(v)1.7-DeltaR1370-L1374). Both of these mutations map to the pore region of the Na(v)1.7 sodium channel. Using transient transfection of PC12 cells we found a significant reduction in membrane localization of the mutant protein compared to the wild type. Furthermore, voltage clamp experiments of mutant-transfected HEK293 cells show a complete loss of function of the sodium channel, consistent with the absence of pain phenotype. In summary, this study has identified critical amino acids needed for the normal subcellular localization and function of Na(v)1.7.
Assuntos
Mutação de Sentido Incorreto/genética , Insensibilidade Congênita à Dor/genética , Fases de Leitura/genética , Deleção de Sequência/genética , Canais de Sódio/genética , Animais , Membrana Celular/metabolismo , Análise Mutacional de DNA , Fenômenos Eletrofisiológicos , Etnicidade/genética , Feminino , Células HEK293 , Humanos , Israel , Masculino , Proteínas Mutantes/metabolismo , Canal de Sódio Disparado por Voltagem NAV1.7 , Células PC12 , Linhagem , Ratos , Transfecção , Reino UnidoRESUMO
Neonatal screening in Macedonia detects congenital hypothyroidism (CH) with an incidence of 1 in 1,585, and more than 50% of cases exhibit a normally located gland-in-situ (GIS). Monogenic mutations causing dyshormonogenesis may underlie GIS CH; additionally, a small proportion of thyroid hypoplasia has a monogenic cause, such as TSHR and PAX8 defects. The genetic architecture of Macedonian CH cases has not previously been studied. We recruited screening-detected, non-syndromic GIS CH or thyroid hypoplasia cases (n = 40) exhibiting a spectrum of biochemical thyroid dysfunction ranging from severe permanent to mild transient CH and including 11 familial cases. Cases were born at term, with birth weight >3,000 g, and thyroid morphologies included goiter (n = 11), thyroid hypoplasia (n = 6), and apparently normal-sized thyroid. A comprehensive, phenotype-driven, Sanger sequencing approach was used to identify genetic mutations underlying CH, by sequentially screening known dyshormonogenesis-associated genes and TSHR in GIS cases and TSHR and PAX8 in cases with thyroid hypoplasia. Potentially pathogenic variants were identified in 14 cases, of which four were definitively causative; we also detected digenic variants in three cases. Seventeen variants (nine novel) were identified in TPO (n = 4), TG (n = 3), TSHR (n = 4), DUOX2 (n = 4), and PAX8 (n = 2). No mutations were detected in DUOXA2, NIS, IYD, and SLC26A7. The relatively low mutation frequency suggests that factors other than recognized monogenic causes (oligogenic variants, environmental factors, or novel genes) may contribute to GIS CH in this region. Future non-hypothesis-driven, next-generation sequencing studies are required to confirm these findings.
Assuntos
Hipotireoidismo Congênito/diagnóstico , Mutação , Fator de Transcrição PAX8/genética , Receptores da Tireotropina/genética , Disgenesia da Tireoide/diagnóstico , Criança , Pré-Escolar , Hipotireoidismo Congênito/epidemiologia , Hipotireoidismo Congênito/genética , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Lactente , Recém-Nascido , Fenótipo , República da Macedônia do Norte/epidemiologia , Disgenesia da Tireoide/epidemiologia , Disgenesia da Tireoide/genéticaRESUMO
INTRODUCTION: Heterozygous mutations or haploinsufficiency of NKX2-1 are associated with the brain-lung-thyroid syndrome incorporating primary hypothyroidism, respiratory distress, and neurological disturbances. CASE PRESENTATION: We report a patient presenting in the neonatal period with multiple pituitary hormone deficiency including central hypothyroidism and hypoadrenalism, growth hormone deficiency, undetectable gonadotrophins, and a small anterior pituitary on MRI. CGH microarray revealed haploinsufficiency for NKX2.1 and during subsequent follow-up, she has exhibited the classic triad of brain-lung-thyroid syndrome with undetectable tissue on thyroid ultrasonography. Whilst the role of NKX2-1 is well described in murine pituitary development, this report constitutes the first description of multiple pituitary dysfunction in humans associated with the syndrome and haploinsufficiency NKX2-1. CONCLUSION: The report highlights a potential need for pituitary screening in patients with established brain-lung-thyroid syndrome and implicates NKX2.1 in human pituitary disease.
Assuntos
Atetose/genética , Coreia/genética , Hipotireoidismo Congênito/genética , Haploinsuficiência , Doenças da Hipófise/genética , Síndrome do Desconforto Respiratório do Recém-Nascido/genética , Fator Nuclear 1 de Tireoide/genética , Animais , Atetose/diagnóstico por imagem , Coreia/diagnóstico por imagem , Hipotireoidismo Congênito/diagnóstico por imagem , Feminino , Humanos , Lactente , Camundongos , Doenças da Hipófise/diagnóstico por imagem , Síndrome do Desconforto Respiratório do Recém-Nascido/diagnóstico por imagemRESUMO
Background: The etiology, course, and most appropriate management of borderline congenital hypothyroidism (CH) are poorly defined, such that the optimal threshold for diagnosis with bloodspot screening thyrotropin (bsTSH) measurement remains controversial. Dual oxidase 2 (DUOX2) mutations may initially cause borderline elevation of bsTSH, which later evolves into significant hypothyroidism on venous blood measurement. It was hypothesized that mutations in both DUOX2 and its accessory protein DUOXA2 may occur frequently, even in patients with borderline bsTSH elevation, such that higher diagnostic thresholds in bsTSH screening may fail to detect such cases, with consequent risk of undiagnosed neonatal hypothyroidism of sufficient magnitude to require thyroxine therapy. This study aimed to investigate the frequency and characteristics of DUOX2 and DUOXA2 mutations in a borderline CH cohort. Methods: A cross-sectional study of patients with borderline CH was undertaken at Great Ormond Street Hospital, a tertiary British pediatric center. DUOX2 was sequenced in 52 patients with a bsTSH of 6-19.9 mIU/L, venous TSH of >25 mIU/L, and eutopic thyroid gland in situ. DUOXA2 was sequenced in DUOX2 mutation-negative cases, and novel DUOXA2 mutations were functionally characterized. Results: A total of 26 (50%) patients harbored likely pathogenic mutations in DUOX2 (n = 20; 38%) or DUOXA2 (n = 6; 12%), including novel gene variants (DUOX2, n = 3; DUOXA2, n = 7). Two recurrent DUOX2 mutations (p.Q570L, p.F966Sfs*29) occurred frequently in population databases (MAF ≥0.01). Despite bsTSH being <10 mIU/L in 46% of DUOX2 and DUOXA2 mutation-positive cases, venous free thyroxine levels in these patients were in the moderate CH range (M = 9.3 pmol/L, range <3.9-15.8 pmol/L), Conclusions: Targeted DUOX2 and DUOXA2 sequencing in a borderline CH cohort has a high diagnostic yield. These findings might argue for a lowering of bsTSH thresholds, but follow-up studies are required to assess whether cases with borderline bsTSH harboring DUOX2/DUOXA2 mutations will benefit from an early diagnosis and subsequent levothyroxine treatment.
Assuntos
Hipotireoidismo Congênito/diagnóstico , Hipotireoidismo Congênito/genética , Oxidases Duais/genética , Proteínas de Membrana/genética , Estudos Transversais , Feminino , Humanos , Recém-Nascido , Masculino , Mutação , Triagem Neonatal , Reino UnidoRESUMO
Defects in genes mediating thyroid hormone biosynthesis result in dyshormonogenic congenital hypothyroidism (CH). Here, we report homozygous truncating mutations in SLC26A7 in 6 unrelated families with goitrous CH and show that goitrous hypothyroidism also occurs in Slc26a7-null mice. In both species, the gene is expressed predominantly in the thyroid gland, and loss of function is associated with impaired availability of iodine for thyroid hormone synthesis, partially corrected in mice by iodine supplementation. SLC26A7 is a member of the same transporter family as SLC26A4 (pendrin), an anion exchanger with affinity for iodide and chloride (among others), whose gene mutations cause congenital deafness and dyshormonogenic goiter. However, in contrast to pendrin, SLC26A7 does not mediate cellular iodide efflux and hearing in affected individuals is normal. We delineate a hitherto unrecognized role for SLC26A7 in thyroid hormone biosynthesis, for which the mechanism remains unclear.
Assuntos
Antiporters/genética , Hipotireoidismo Congênito/genética , Bócio/genética , Transportadores de Sulfato/genética , Adulto , Animais , Criança , Pré-Escolar , Códon sem Sentido , Hipotireoidismo Congênito/diagnóstico , Análise Mutacional de DNA , Feminino , Bócio/congênito , Bócio/diagnóstico , Células HEK293 , Homozigoto , Humanos , Masculino , Camundongos , Camundongos Knockout , Pessoa de Meia-Idade , Linhagem , Glândula Tireoide/patologia , Sequenciamento do ExomaRESUMO
In the absence of maternal thyroid disease or iodine deficiency, fetal goitre is rare and usually attributable to dyshormonogenesis, for which genetic ascertainment is not always undertaken in the UK. Mechanical complications include tracheal and oesophageal compression with resultant polyhydramnios, malpresentation at delivery and neonatal respiratory distress. We report an Indian kindred in which the proband (first-born son) had congenital hypothyroidism (CH) without obvious neonatal goitre. His mother's second pregnancy was complicated by fetal hypothyroid goitre and polyhydramnios, prompting amniotic fluid drainage and intraamniotic therapy (with liothyronine, T3 and levothyroxine, T4). Sadly, intrauterine death occurred at 31 weeks. Genetic studies in the proband demonstrated compound heterozygous novel (c.5178delT, p.A1727Hfs*26) and previously described (c.7123G > A, p.G2375R) thyroglobulin (TG) mutations which are the likely cause of fetal goitre in the deceased sibling. TG mutations rarely cause fetal goitre, and management remains controversial due to the potential complications of intrauterine therapy however an amelioration in goitre size may be achieved with intraamniotic T4, and intraamniotic T3/T4 combination has achieved a favourable outcome in one case. A conservative approach, with surveillance, elective delivery and commencement of levothyroxine neonatally may also be justified, although intubation may be required post delivery for respiratory obstruction. Our observations highlight the lethality which may be associated with fetal goitre. Additionally, although this complication may recur in successive pregnancies, our case highlights the possibility of discordance for fetal goitre in siblings harbouring the same dyshormonogenesis-associated genetic mutations. Genetic ascertainment may facilitate prenatal diagnosis and assist management in familial cases. LEARNING POINTS: CH due to biallelic, loss-of-function TG mutations is well-described and readily treatable in childhood however mechanical complications from associated fetal goitre may include polyhydramnios, neonatal respiratory compromise and neck hyperextension with dystocia complicating delivery.CH due to TG mutations may manifest with variable phenotypes, even within the same kindred.Treatment options for hypothyroid dyshormogenic fetal goitre in a euthyroid mother include intraamniotic thyroid hormone replacement in cases with polyhydramnios or significant tracheal obstruction. Alternatively, cases may be managed conservatively with radiological surveillance, elective delivery and neonatal levothyroxine treatment, although intubation and ventilation may be required to support neonatal respiratory compromise.Genetic ascertainment in such kindreds may enable prenatal diagnosis and anticipatory planning for antenatal management of further affected offspring.
RESUMO
Chromatin assembled with centromere protein A (CENP-A) is the epigenetic mark of centromere identity. Using new reference models, we now identify sites of CENP-A and histone H3.1 binding within the megabase, α-satellite repeat-containing centromeres of 23 human chromosomes. The overwhelming majority (97%) of α-satellite DNA is found to be assembled with histone H3.1-containing nucleosomes with wrapped DNA termini. In both G1 and G2 cell cycle phases, the 2-4% of α-satellite assembled with CENP-A protects DNA lengths centered on 133 bp, consistent with octameric nucleosomes with DNA unwrapping at entry and exit. CENP-A chromatin is shown to contain equimolar amounts of CENP-A and histones H2A, H2B, and H4, with no H3. Solid-state nanopore analyses show it to be nucleosomal in size. Thus, in contrast to models for hemisomes that briefly transition to octameric nucleosomes at specific cell cycle points or heterotypic nucleosomes containing both CENP-A and histone H3, human CENP-A chromatin complexes are octameric nucleosomes with two molecules of CENP-A at all cell cycle phases.