Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(3)2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38338641

RESUMO

The natural cyclic AMP antagonist, prostaglandylinositol cyclic phosphate (cyclic PIP), is biosynthesized from prostaglandin E (PGE) and activated inositol phosphate (n-Ins-P), which is synthesized by a particulate rat-liver-enzyme from GTP and a precursor named inositol phosphate (pr-Ins-P), whose 5-ring phosphodiester structure is essential for n-Ins-P synthesis. Aortic myocytes, preincubated with [3H] myo-inositol, synthesize after angiotensin II stimulation (30 s) [3H] pr-Ins-P (65% yield), which is converted to [3H] n-Ins-P and [3H] cyclic PIP. Acid-treated (1 min) [3H] pr-Ins-P co-elutes with inositol (1,4)-bisphosphate in high performance ion chromatography, indicating that pr-Ins-P is inositol (1:2-cyclic,4)-bisphosphate. Incubation of [3H]-GTP with unlabeled pr-Ins-P gave [3H]-guanosine-labeled n-Ins-P. Cyclic PIP synthase binds the inositol (1:2-cyclic)-phosphate part of n-Ins-P to PGE and releases the [3H]-labeled guanosine as [3H]-GDP. Thus, n-Ins-P is most likely guanosine diphospho-4-inositol (1:2-cyclic)-phosphate. Inositol feeding helps patients with metabolic conditions related to insulin resistance, but explanations for this finding are missing. Cyclic PIP appears to be the key for explaining the curative effect of inositol supplementation: (1) inositol is a molecular constituent of cyclic PIP; (2) cyclic PIP triggers many of insulin's actions intracellularly; and (3) the synthesis of cyclic PIP is decreased in diabetes as shown in rodents.


Assuntos
Fosfatos de Inositol , Inositol , Prostaglandinas E , Humanos , Ratos , Animais , Inositol/farmacologia , Inositol/metabolismo , Fosfatos de Inositol/metabolismo , Guanosina Trifosfato , Guanosina , Fosfatos
2.
Curr Biol ; 12(6): 477-82, 2002 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-11909533

RESUMO

Regulation of Cl(-) channel conductance by Ins(3,4,5,6)P(4) provides receptor-dependent control over salt and fluid secretion, cell volume homeostasis, and electrical excitability of neurones and smooth muscle. Ignorance of how Ins(3,4,5,6)P(4) is synthesized has long hindered our understanding of this signaling pathway. We now show Ins(3,4,5,6)P(4) synthesis by Ins(1,3,4,5,6)P(5) 1-phosphatase activity by an enzyme previously characterized as an Ins(3,4,5,6)P(4) 1-kinase. Rationalization of these phenomena with a ligand binding model unveils Ins(1,3,4)P(3) as not simply an alternative kinase substrate, but also an activator of Ins(1,3,4,5,6)P(5) 1-phosphatase. Stable overexpression of the enzyme in epithelial monolayers verifies its physiological role in elevating Ins(3,4,5,6)P(4) levels and inhibiting secretion. It is exceptional for a single enzyme to catalyze two opposing signaling reactions (1-kinase/1-phosphatase) under physiological conditions. Reciprocal coordination of these opposing reactions offers an alternative to general doctrine that intracellular signals are regulated by integrating multiple, distinct phosphatases and kinases.


Assuntos
Fosfatos de Inositol/metabolismo , Monoéster Fosfórico Hidrolases/metabolismo , Transdução de Sinais , Cálcio/metabolismo , Humanos , Fosforilação
3.
Biochem J ; 397(3): 509-18, 2006 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-16599905

RESUMO

myo-Inositol and its downstream metabolites participate in diverse physiological processes. Nevertheless, considering their variety, it is likely that additional roles are yet to be uncovered. Biosynthesis of myo-inositol takes place via an evolutionarily conserved metabolic pathway and is strictly dependent on inositol-3-phosphate synthase (EC 5.5.1.4). Genetic manipulation of this enzyme will disrupt the cellular inositol supply. Two methods, based on gene deletion and antisense strategy, were used to generate mutants of the cellular slime mould Dictyostelium discoideum. These mutants are inositol-auxotrophic and show phenotypic changes under inositol starvation. One remarkable attribute is their inability to live by phagocytosis of bacteria, which is the exclusive nutrient source in their natural environment. Cultivated on fluid medium, the mutants lose their viability when deprived of inositol for longer than 24 h. Here, we report a study of the alterations in the first 24 h in cellular inositol, inositol phosphate and phosphoinositide concentrations, whereby a rapidly accumulating phosphorylated compound was detected. After its identification as 2,3-BPG (2,3-bisphosphoglycerate), evidence could be found that the internal disturbances of inositol homoeostasis trigger the accumulation. In a first attempt to characterize this as a physiologically relevant response, the efficient in vitro inhibition of a D. discoideum inositol-polyphosphate 5-phosphatase (EC 3.1.3.56) by 2,3-BPG is presented.


Assuntos
Dictyostelium/metabolismo , Inositol/biossíntese , 2,3-Difosfoglicerato/metabolismo , Animais , Sobrevivência Celular , Dictyostelium/genética , Dictyostelium/crescimento & desenvolvimento , Fosfatos de Inositol/metabolismo , Inositol Polifosfato 5-Fosfatases , Mutação , Fagocitose , Fosfatidilinositóis/metabolismo , Monoéster Fosfórico Hidrolases/antagonistas & inibidores , Pinocitose
4.
FEBS Lett ; 580(1): 324-30, 2006 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-16376887

RESUMO

Ins(1,4,5,6)P4, a biologically active cell constituent, was recently advocated as a substrate of human Ins(3,4,5,6)P4 1-kinase (hITPK1), because stereochemical factors were believed relatively unimportant to specificity [Miller, G.J., Wilson, M.P., Majerus, P.W. and Hurley, J.H. (2005) Specificity determinants in inositol polyphosphate synthesis: crystal structure of inositol 1,3,4-triphosphate 5/6-kinase. Mol. Cell. 18, 201-212]. Contrarily, we provide three examples of hITPK1 stereospecificity. hITPK1 phosphorylates only the 1-hydroxyl of both Ins(3,5,6)P3 and the meso-compound, Ins(4,5,6)P3. Moreover, hITPK1 has >13,000-fold preference for Ins(3,4,5,6)P4 over its enantiomer, Ins(1,4,5,6)P4. The biological significance of hITPK1 being stereospecific, and not physiologically phosphorylating Ins(1,4,5,6)P4, is reinforced by our demonstrating that Ins(1,4,5,6)P4 is phosphorylated (K(m) = 0.18 microM) by inositolphosphate-multikinase.


Assuntos
Fosfatos de Inositol/química , Fosfotransferases (Aceptor do Grupo Álcool)/química , Humanos , Estrutura Molecular , Estereoisomerismo , Relação Estrutura-Atividade , Especificidade por Substrato
5.
Bioorg Chem ; 31(1): 44-67, 2003 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-12697168

RESUMO

Phytases are enzymes that catalyze the hydrolysis of phosphate esters in myo-inositol hexakisphosphate (phytic acid). The precise routes of enzymatic dephosphorylation by phytases of the yeast strains Saccharomyces cerevisiae and Pichia rhodanensis have been investigated up to the myo-inositol trisphosphate level, including the absolute configuration of the intermediates. Stereoselective assignment of the myo-inositol pentakisphosphates (D-myo-inositol 1,2,4,5,6-pentakisphosphate and D-myo-inositol 1,2,3,4,5-pentakisphosphate) generated was accomplished by a new method based on enantiospecific enzymatic conversion and HPLC analysis. Via conduritol B or E derivatives the total syntheses of two epimers of myo-inositol hexakisphosphate, neo-inositol hexakisphosphate and L-chiro-inositol hexakisphosphate were performed to examine the specificity of the yeast phytases with these substrate analogues. A comparison of kinetic data and the degradation pathways determined gave the first hints about the molecular recognition of inositol hexakisphosphates by the enzymes. Exploitation of the high stereo- and regiospecificity observed in the dephosphorylation of neo- and L-chiro-inositol hexakisphosphate made it possible to establish enzyme-assisted steps for the synthesis of D-neo-inositol 1,2,5,6-tetrakisphosphate, L-chiro-inositol 1,2,3,5,6-pentakisphosphate and L-chiro-inositol 1,2,3,6-tetrakisphosphate.


Assuntos
6-Fitase/química , 6-Fitase/metabolismo , Ácido Fítico/química , Ácido Fítico/metabolismo , Pichia/enzimologia , Saccharomyces cerevisiae/enzimologia , Ativação Enzimática , Hidrólise , Modelos Químicos , Modelos Moleculares , Ácido Fítico/análogos & derivados , Pichia/química , Pichia/classificação , Saccharomyces cerevisiae/química , Sensibilidade e Especificidade , Especificidade da Espécie , Estereoisomerismo , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA