RESUMO
Long-range surface plasmon Y-junctions are demonstrated as sensors for the detection of bulk refractive index changes in solution and for protein binding. Using a fully-cladded Au stripe waveguide as a reference channel, common drift and noise in the system can be eliminated, relaxing the need for precise optical alignments. The performance of the structure is discussed theoretically, then bulk sensing is carried out experimentally with five solutions of different refractive indices, and protein sensing is demonstrated through physisorption of bovine serum albumin on a carboxyl-terminated Au stripe. The Y-junction biosensor demonstrated a very good ability to perform drift and noise suppression for fast and accurate biosensing.
RESUMO
We propose a surface plasmon resonance (SPR) sensor based on photonic crystal fiber (PCF) with selectively filled analyte channels. Silver is used as the plasmonic material to accurately detect the analytes and is coated with a thin graphene layer to prevent oxidation. The liquid-filled cores are placed near to the metallic channel for easy excitation of free electrons to produce surface plasmon waves (SPWs). Surface plasmons along the metal surface are excited with a leaky Gaussian-like core guided mode. Numerical investigations of the fiber's properties and sensing performance are performed using the finite element method (FEM). The proposed sensor shows maximum amplitude sensitivity of 418 Refractive Index Units (RIU-1) with resolution as high as 2.4 × 10(-5) RIU. Using the wavelength interrogation method, a maximum refractive index (RI) sensitivity of 3000 nm/RIU in the sensing range of 1.46-1.49 is achieved. The proposed sensor is suitable for detecting various high RI chemicals, biochemical and organic chemical analytes. Additionally, the effects of fiber structural parameters on the properties of plasmonic excitation are investigated and optimized for sensing performance as well as reducing the sensor's footprint.
Assuntos
Grafite/química , Prata/química , Ressonância de Plasmônio de Superfície/instrumentação , Desenho de Equipamento , Teste de Materiais , Fibras Ópticas , Óptica e FotônicaRESUMO
The most common permittivity function models are compared and identifying the best model for further studies is desired. For this study, simulations using several different models and an analytical analysis on a practical surface Plasmon structure were done with an accuracy of â¼ 94.4% with respect to experimental data. Finite element method, combined with dielectric properties extracted from the Brendel-Bormann function model, was utilized, the latter being chosen from a comparative study on four available models.
Assuntos
Modelos Teóricos , Ressonância de Plasmônio de Superfície/métodos , Análise de Elementos FinitosRESUMO
Characteristics of fiber optical parametric amplifier (FOPA) with double-pass pump configuration are experimentally investigated. The double-pass pump FOPA exhibits more than two-fold steeper gain slope in comparison to the conventional FOPA due to elongation of effective fiber length. In the L-band amplification band, a secondary idler is generated and used as the transmission signal in lieu of the original L-band signal. Gain measurement and bit error rate experiments are performed on the secondary idler and the results prove the usability of secondary idler, which is potentially useful for distribution networks.
RESUMO
This study presents the first investigation into the capability of fiber Bragg grating (FBG) sensors to measure interface pressure between the stump and the prosthetic sockets of a trans-tibial amputee. FBG element(s) were recoated with and embedded in a thin layer of epoxy material to form a sensing pad, which was in turn embedded in a silicone polymer material to form a pressure sensor. The sensor was tested in real time by inserting a heavy-duty balloon into the socket and inflating it by using an air compressor. This test was conducted to examine the sensitivity and repeatability of the sensor when subjected to pressure from the stump of the trans-tibial amputee and to mimic the actual environment of the amputee's Patellar Tendon (PT) bar. The sensor exhibited a sensitivity of 127 pm/N and a maximum FSO hysteresis of around ~0.09 in real-time operation. Very good reliability was achieved when the sensor was utilized for in situ measurements. This study may lead to smart FBG-based amputee stump/socket structures for pressure monitoring in amputee socket systems, which will result in better-designed prosthetic sockets that ensure improved patient satisfaction.
Assuntos
Cotos de Amputação/fisiopatologia , Amputados/reabilitação , Membros Artificiais , Tecnologia de Fibra Óptica/instrumentação , Monitorização Ambulatorial/instrumentação , Refratometria/instrumentação , Transdutores de Pressão , Desenho de Equipamento , Análise de Falha de Equipamento , Humanos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Tíbia/fisiopatologiaRESUMO
In this paper, we present the development and testing of an optical-based sensor for monitoring the corrosion of reinforcement rebar. The testing was carried out using an 80% etched-cladding Fibre Bragg grating sensor to monitor the production of corrosion waste in a localized region of the rebar. Progression of corrosion can be sensed by observing the reflected wavelength shift of the FBG sensor. With the presence of corrosion, the etched-FBG reflected spectrum was shifted by 1.0 nm. In addition, with an increase in fringe pattern and continuously, step-like drop in power of the Bragg reflected spectrum was also displayed.
RESUMO
This paper reports the design, characterization and implementation of a fiber Bragg grating (FBG)-based temperature sensor for an insulted-gate Bipolar transistor (IGBT) in a solar panel inverter. The FBG is bonded to the higher coefficient of thermal expansion (CTE) side of a bimetallic strip to increase its sensitivity. Characterization results show a linear relationship between increasing temperature and the wavelength shift. It is found that the sensitivity of the sensor can be categorized into three characterization temperature regions between 26 °C and 90 °C. The region from 41 °C to 90 °C shows the highest sensitivity, with a value of 14 pm/°C. A new empirical model that considers both temperature and strain effects has been developed for the sensor. Finally, the FBG-bimetal temperature sensor is placed in a solar panel inverter and results confirm that it can be used for real-time monitoring of the IGBT temperature.
Assuntos
Energia Solar , TemperaturaRESUMO
We demonstrate a simplified algorithm to manifest the contribution of amplified spontaneous emission in variable gain-flattened Erbium-doped fiber amplifier (EDFA). The detected signal power at the input and output ports of EDFA comprises of both signal and noise. The generated amplified spontaneous emission from EDFA cannot be differentiated by photodetector which leads to underestimation of the targeted gain value. This gain penalty must be taken into consideration in order to obtain the accurate gain level. By taking the average gain penalty within the dynamic gain range, the targeted output power is set higher than the desired level. Thus, the errors are significantly reduced to less than 0.15 dB from 15 dB to 30 dB desired gain values.
Assuntos
Algoritmos , Amplificadores Eletrônicos , Érbio/química , Fibras Ópticas , Desenho Assistido por Computador , Desenho de Equipamento , Análise de Falha de Equipamento , Reprodutibilidade dos Testes , Sensibilidade e EspecificidadeRESUMO
Evaluation of binding between analytes and its relevant ligands on surface plasmon resonance (SPR) biosensor is of considerable importance for accurate determination and screening of an interference in immunosensors. Dengue virus serotype 2 was used as a case study in this investigation. This research work compares and interprets the results obtained from analytical analysis with the experimental ones. Both the theoretical calculations and experimental results are verified with one sample from each category of dengue serotypes 2 (low, mid, and high positive), which have been examined in the database of established laboratorial diagnosis. In order to perform this investigation, the SPR angle variations are calculated, analyzed, and then validated via experimental SPR angle variations. Accordingly, the error ratios of 5.35, 6.54, and 3.72% were obtained for the low-, mid-, and high-positive-specific immune globulins of patient serums, respectively. In addition, the magnetic fields of the biosensor are numerically simulated to show the effect of different binding mediums.
Assuntos
Anticorpos Antivirais/sangue , Vírus da Dengue/imunologia , Vírus da Dengue/isolamento & purificação , Dengue/diagnóstico , Imunoglobulina M/sangue , Kit de Reagentes para Diagnóstico/virologia , Ressonância de Plasmônio de Superfície/métodos , Dengue/imunologia , Humanos , MalásiaRESUMO
Surface plasmon resonance (SPR) is a medical diagnosis technique with high sensitivity and specificity. In this research, a new method based on SPR is proposed for rapid, 10-minute detection of the anti-dengue virus in human serum samples. This novel technique, known as rapid immunoglobulin M (IgM)-based dengue diagnostic test, can be utilized quickly and easily at the point of care. Four dengue virus serotypes were used as ligands on a biochip. According to the results, a serum volume of only 1â µl from a dengue patient (as a minimized volume) is required to indicate SPR angle variation to determine the ratio of each dengue serotype in samples with 83-93% sensitivity and 100% specificity.
Assuntos
Anticorpos Antivirais/sangue , Técnicas Biossensoriais , Vírus da Dengue/isolamento & purificação , Dengue/diagnóstico , Testes Diagnósticos de Rotina/métodos , Imunoglobulina M/sangue , Dengue/sangue , Dengue/virologia , Ensaio de Imunoadsorção Enzimática , Humanos , Imunoglobulina G/sangue , Ressonância de Plasmônio de SuperfícieRESUMO
A new technique of x-ray focusing crystal spectrometers' calibration is the desired result. For this purpose the spectrometer is designed to register radiated copper Kα and Kß lines by using a flat α-quartz crystal. This experiment uses pre-breakdown x-ray emissions in low vacuum of about 2.5-3 mbar. At this pressure the pinch will not form so the plasma will not radiate. The anode material is copper and the capacity of the capacitor bank is 22.6 nF. This experiment designed and mounted a repetitive triggering system to save the operator time making hundreds of shots. This emission amount is good for calibration and geometrical adjustment of an optical crystal x-ray focusing spectrometer.