Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Environ Res ; 249: 118344, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38311200

RESUMO

More and more previously designed wastewater treatment plants (WWTPs) are upgraded to tertiary treatment to meet the higher effluent discharge standards of conventional pollutants. Contaminants of emerging concern (CECs) can cause adverse effects on organisms and usually flow into WWTPs along with urban sewage. How the retrofitted WWTPs targeting conventional pollutants will influence the treatment efficiency of CECs is seldom discussed. This study investigates the removal of CECs in two full-scale newly retrofitted WWTPs (CD and JM WWTPs), containing high-efficiency sedimentation tank and denitrification deep bed filter for enhancing total nitrogen removal. The overall CEC removal efficiencies in the CD and JM WWTPs were 73.79 % and 93.63 %, respectively. Mass balance results indicated that CD WWTP and JM WWTP release a total of 36.89 and 88.58 g/d of CECs into the environment through effluent and excess sludge, respectively. Analysis of the concentration of CECs along the treatment process revealed most CECs were removed in the biological treatment units. The incorporation of newly constructed tertiary treatment proved beneficial for CEC removal and removed 2.93 % and 2.36 % CECs, corresponding to CEC removal of 2.92 and 27.49 g/d in the CD and JM WWTPs, respectively. The data of this study were further used to evaluate the suitability of the SimpleTreat model for simulating the fate of CECs in WWTPs. The predicted fraction of CECs discharged through the biological treatment effluent were generally within ten-fold difference from the measured results, highlighting its potential for estimating CEC removal in WWTPs.


Assuntos
Nitrogênio , Eliminação de Resíduos Líquidos , Águas Residuárias , Poluentes Químicos da Água , Poluentes Químicos da Água/análise , Nitrogênio/análise , Eliminação de Resíduos Líquidos/métodos , Águas Residuárias/química , Águas Residuárias/análise
2.
Environ Sci Technol ; 57(44): 16940-16952, 2023 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-37886817

RESUMO

Harnessing the potential of specific antibiotic-degrading microalgal strains to optimize microalgal-bacterial granular sludge (MBGS) technology for sustainable antibiotic wastewater treatment and antibiotic resistance genes (ARGs) mitigation is currently limited. This article examined the performance of bacterial granular sludge (BGS) and MBGS (of Haematococcus pluvialis, an antibiotic-degrading microalga) systems in terms of stability, nutrient and antibiotic removal, and fate of ARGs and mobile genetic elements (MGEs) under multiclass antibiotic loads. The systems exhibited excellent performance under none and 50 µg/L mixed antibiotics and a decrease in performance at a higher concentration. The MBGS showed superior potential, higher nutrient removal, 53.9 mg/L/day higher chemical oxygen demand (COD) removal, and 5.2-8.2% improved antibiotic removal, notably for refractory antibiotics, and the system removal capacity was predicted. Metagenomic analysis revealed lower levels of ARGs and MGEs in effluent and biomass of MBGS compared to the BGS bioreactor. Particle association niche and projection pursuit regression models indicated that microalgae in MBGS may limit gene transfers among biomass and effluent, impeding ARG dissemination. Moreover, a discrepancy was found in the bacterial antibiotic-degrading biomarkers of BGS and MBGS systems due to the microalgal effect on the microcommunity. Altogether, these findings deepened our understanding of the microalgae's value in the MBGS system for antibiotic remediation and ARG propagation control.


Assuntos
Antibacterianos , Microalgas , Antibacterianos/farmacologia , Águas Residuárias , Esgotos/microbiologia , Genes Bacterianos , Bactérias/genética , Resistência Microbiana a Medicamentos/genética
3.
J Environ Manage ; 341: 117986, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37172350

RESUMO

Increased urbanization and anthropogenic activities can alter dissolved organic matter (DOM) and complicate its interaction with bacteria in rivers' ecosystems, however, there is limited information about how bacterial communities respond to DOM components in rivers with different urbanization levels. Here, we combined spectroscopy-based DOM analysis and 16S rRNA gene amplicon sequencing to investigate the associations of bacterial taxa and DOM properties as well as the impacts of DOM on bacterial niche breadth in North River (NR) and West River (WR) of Jiulong River watershed, southern China, which had low and high urbanization levels, respectively. Spectroscopy analysis showed that hydrophilic DOM was predominant in both rivers whereas chromophoric DOM was higher in WR. Network analysis indicated that only seven bacterial genera (i.e., hg clade, chthoniobacter, Geobacter, Acidibacter, Alphal Cluster, Fluviicola, and Lacunisphaera) showed strong associations with DOM optical variables in both rivers, whereas more than 85% of DOM-bacterial genera associations were different between rivers. These results suggest that the relationship between DOM and bacterial communities had different responses in rivers with different urbanization levels. The partial least square path model indicated that the total standardized effect of physico-chemicals on bacterial niche breadth was higher in NR (0.62) than in WR (0.35), whereas humic substances showed an opposite pattern (NR: -0.42; WR: 1.67). The distinct effects of physico-chemicals and DOM on bacterial niche breadths between rivers could be due to the different effects of urbanization and human activities on the environmental conditions of riverine ecosystems. Our findings revealed a huge dissimilarity in the bacteria-DOM co-occurrence networks between rivers with different urbanization levels and provide a novel insight that urbanization may enhance DOM's importance to bacterial niche breadths.


Assuntos
Matéria Orgânica Dissolvida , Rios , Humanos , Rios/química , Ecossistema , Urbanização , RNA Ribossômico 16S/genética , Bactérias/genética , Espectrometria de Fluorescência
4.
J Environ Manage ; 326(Pt B): 116737, 2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36403459

RESUMO

Dissolved organic matter (DOM), known as a key to the aquatic carbon cycle, is influenced by abiotic and biotic factors. However, the compositional variation and these factors' effects on fluorescence DOM (FDOM) in urban rivers undergoing different anthropogenic pressure are poorly investigated. Herein, using fluorescence excitation-emission matrix and parallel factor analysis (EEM-PARAFAC), four FDOM components (C1, C2, C3, and C4) were identified in a less urbanized north river (NR) and a more urbanized west river (WR) of Jiulong River Watershed in Fujian province, China. C1, C2, and C4 were related to humic-like substances (HLS) and C3 to protein-like substances (PLS). HLS (63.9% in WR and 36.4% in NR) and PLS (62.7% in WR and 37.3% in NR) exhibited higher fluorescence in the more urbanized river. We also found higher PLS in winter, but higher HLS in summer for both rivers. Although the coefficient of variation indicated a difference in FDOM components stability to some extent between the two rivers, the typhoon event that occurred in summer had a stronger disruptive impact on the CDOM and FDOM of a more urbanized river than that of a less urbanized river. We explore abiotic and biotic factors' effects on FDOM using the partial least squares path model (PLS-PM). PLS-PM results revealed higher significant influences of biotic factors on FDOM in the more urbanized river. This study enhances our understanding of FDOM dynamics of rivers with different anthropogenic pressure together with the abiotic and biotic factors driving them.


Assuntos
Matéria Orgânica Dissolvida , Rios , Substâncias Húmicas/análise , Análise Fatorial , Estações do Ano , China , Espectrometria de Fluorescência
5.
J Hazard Mater ; 442: 129996, 2023 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-36152547

RESUMO

Microplastics could accumulate and enrich antibiotics in the aquatic environment. Despite this, the joint effects of microplastics and antibiotics on aquatic organisms are not clear. Here, we investigated the changes of microbial interactions in both gill and gut of marine medaka exposed to polystyrene microbeads (PS) and/or tetracycline for 30 days by using co-occurrence network analysis based on 16S rRNA gene amplicon sequences. We found that the single and combined effects of PS and tetracycline were more profound on the gut than on the gill microbiome. SourceTracker analysis showed that the relative contributions from the gill microbiome to the gut microbiome increased under combined exposure. Moreover, the combined exposure reduced the complexity and stability of the gut microbial network more than those induced by any single exposure, suggesting the synergistic effects of PS and tetracycline on the gut microbiome. The PS and tetracycline combined exposure also caused a shift in the keystone taxa of the gut microbial network. However, no similar pattern was found for gill microbial networks. Furthermore, single and combined exposure to PS and/or tetracycline altered the associations between the gut network taxa and indicator liver metabolites. Altogether, these findings enhanced our understanding of the hazards of the co-occurring environmental microplastics and antibiotics to the fish commensal microbiome.


Assuntos
Microbiota , Oryzias , Animais , Microplásticos/toxicidade , Oryzias/genética , RNA Ribossômico 16S/genética , Plásticos , Brânquias , Poliestirenos/toxicidade , Tetraciclina/toxicidade , Antibacterianos/toxicidade
6.
Environ Sci Ecotechnol ; 13: 100223, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36437887

RESUMO

Antibiotic resistance genes (ARGs) are a well-known environmental concern. Yet, limited knowledge exists on the fate and transport of ARGs in deep freshwater reservoirs experiencing seasonal hydrological changes, especially in the context of particle-attached (PA) and free-living (FL) lifestyles. Here, the ARG profiles were examined using high-throughput quantitative PCR in PA and FL lifestyles during four seasons representing two hydrological phenomena (vertical mixing and thermal stratification) in the Shuikou Reservoir (SR), Southern China. The results indicated that seasonal hydrological dynamics were critical for influencing the ARGs in PA and FL and the transition of ARGs between the two lifestyles. ARG profiles both in PA and FL were likely to be shaped by horizontal gene transfer. However, they exhibited distinct responses to the physicochemical (e.g., nutrients and dissolved oxygen) changes under seasonal hydrological dynamics. The particle-association niche (PAN) index revealed 94 non-conservative ARGs (i.e., no preferences for PA and FL) and 23 and 16 conservative ARGs preferring PA and FL lifestyles, respectively. A sharp decline in conservative ARGs under stratified hydrologic suggested seasonal influence on the ARGs transition between PA and FL lifestyles. Remarkably, the conservative ARGs (in PA or FL lifestyle) were more closely related to bacterial OTUs in their preferred lifestyle than their counterparts, indicating lifestyle-dependent ARG enrichment. Altogether, these findings enhanced our understanding of the ARG lifestyles and the role of seasonal hydrological changes in governing the ARG transition between the lifestyles in a typical deep freshwater ecosystem.

7.
J Hazard Mater ; 434: 128910, 2022 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-35452987

RESUMO

The attenuation of 10 mixed antibiotics along with nutrients in a continuous flow mode by four freshwater microalgae (Haematococcus pluvialis, Selenastrum capricornutum, Scenedesmus quadricauda, and Chlorella vulgaris) was examined in membrane photobioreactors (MPBRs). At lab-scale, consistent removal of both antibiotic and nutrient was shown by H. pluvialis and S. quadricauda, respectively. The system exhibited better performance with enhanced removal at HRT 24 h compared to 12 h and 48 h. The highest removal efficiency of antibiotics was observed in H. pluvialis MPBR, with the mean antibiotic removal values of 53.57%- 96.33%. Biodegradation was the major removal pathway of the antibiotics in the algal-MPBR (AMPBR), while removal by bioadsorption, bioaccumulation, membrane rejection, and abiotic was minor. Then, the bacterial feature was studied and showed significant influence from system hydrodynamics. The kinetics of continuous flow antibiotic removal followed Stover-Kincannon and Grau second-order models, which revealed great potential of AMPBR to withstand antibiotic load. The latter coupled with the computational fluid dynamic simulation was successfully applied for the residual antibiotic prediction and potential system optimization. Overall, these results provide an important reference for continuous flow antibiotic removal using AMPBR.


Assuntos
Chlorella vulgaris , Clorofíceas , Microalgas , Antibacterianos/metabolismo , Biomassa , Chlorella vulgaris/metabolismo , Cinética , Microalgas/metabolismo , Fotobiorreatores , Águas Residuárias
8.
Sci Total Environ ; 823: 153680, 2022 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-35150684

RESUMO

Excessive quantities of nitrates in the aquatic environment can cause eutrophication and raise water safety concerns. Therefore, identification of the sources of nitrate is crucial to mitigate nitrate pollution and for better management of the water resources. Here, the spatiotemporal variations and sources of nitrate were investigated by stable isotopes (δ15N and δ18O), hydrogeochemical variables (e.g., NO3- and Cl-), and exogenous microbial signals (i.e., sediments, soils, domestic and swine sewage) in an agricultural watershed (Changle River watershed) in China. The concentration ranges of δ15N- and δ18O-NO3- between 3.03‰-18.97‰ and -1.55‰-16.47‰, respectively, suggested that soil nitrogen, chemical fertilizers, and manure and sewage (M&S) were the primary nitrate sources. Bayesian isotopic mixing model suggested that the major proportion of nitrate within the watershed (53.12 ± 10.40% and 63.81 ± 15.08%) and tributaries (64.43 ± 5.03% and 76.20 ± 4.34%) were contributed by M&S in dry and wet seasons, respectively. Community-based microbial source tracking (MST) showed that untreated and treated domestic wastewater was the major source (>70%) of river microbiota. Redundancy analysis with the incorporation of land use, hydrogeochemical variables, dual stable isotope, and exogenous microbial signals revealed domestic wastewater as the dominant cause of nitrate pollution. Altogether, this study not only identifies and quantifies the spatiotemporal variations in nitrate sources in the study area but also provides a new analytical framework by combining nitrate isotopic signatures and community-based MST approaches for source appointment of nitrate in other polluted watersheds.


Assuntos
Nitratos , Poluentes Químicos da Água , Animais , Teorema de Bayes , China , Monitoramento Ambiental , Nitratos/análise , Isótopos de Nitrogênio/análise , Isótopos de Oxigênio/análise , Rios , Suínos , Águas Residuárias/análise , Poluentes Químicos da Água/análise
9.
Water Res ; 212: 118120, 2022 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-35114530

RESUMO

The distribution and fate of contaminants of emerging concern (CECs) was studied in relation to hydrological conditions, land use characteristics, and spatial contiguity in Houxi River. Thirty-four CECs were detected in the surface water during a three-year sampling campaign. Caffeine was most prevalent (99% frequency), while bisphenol A had the highest median concentration (78.2 ng/L) among the detected CECs. Caffeine and the other prevalent CECs lincomycin and bisphenol A, with median concentrations of 3.89 ng/L, 0.26 ng/L, and 78.2 ng/L, respectively, were positively correlated with land use types related to anthropogenic activities (grass, barren, built up, and cropland areas and landscape indexes for human activities). The analysis of similarities revealed significant annual variations, with increasing trends in both the concentrations and detection frequencies of CECs. Spatial variations were demonstrated by higher concentrations and detection frequencies downstream compared to upstream. The singular value decomposition analysis revealed that the downstream sites were the major contributors (55.6%-100%) to the spatial variability of most CECs. Moran's I analysis based on downstream contiguity indicated strong spatial autocorrelation among the connected sites for most CECs. This was further supported by longer correlation lengths for 18 CECs than the average distance between the sampling sites. The spatial autocorrelation can be attributed to the physicochemical properties of CECs and local hydrological dynamics, including temperature, wind speed, and sunshine hours. For most CECs, local contribution predominated over neighbor influence with an average value of 75.5%. The results of this study provide new insight to evaluate CEC distributions, which will be beneficial to policymakers for the management and prioritization of CEC contaminants in the Houxi watershed.


Assuntos
Monitoramento Ambiental , Poluentes Químicos da Água , Humanos , Rios , Análise Espacial , Águas Residuárias , Poluentes Químicos da Água/análise
10.
Sci Total Environ ; 806(Pt 1): 150401, 2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-34562761

RESUMO

Microeukaryotes play a significant role in biogeochemical cycling and can serve as bioindicators of water quality in freshwater ecosystems. However, there is a knowledge gap on how freshwater microeukaryotic communities are assembled, especially that how terrestrial microeukaryotes influence freshwater microeukaryotic assemblages. Here, we used a combination of 18S rRNA gene amplicon sequencing and community-based microbial source tracking (MST) approaches (i.e., SourceTracker and FEAST) to assess the contribution of microeukaryotes from surrounding environments (i.e., soils, river sediments, swine wastewater, influents and effluents of decentralized wastewater treatment plants) to planktonic microeukaryotes in the main channel, tributaries and reservoir of a peri-urban watershed, China in wet and dry seasons. The results indicated that SAR (~ 49% of the total communities), Opithokonta (~ 34%), Archaeplastida (~ 9%), and Amoebozoa (~ 2%) were dominant taxa in the watershed. The community-based MST analysis revealed that sewage effluents (7.96 - 21.84%), influents (2.23 - 13.97%), and river sediments (2.56 - 11.71%) were the major exogenous sources of riverine microeukaryotes. At the spatial scale, the downstream of the watershed (i.e., main channel and tributaries) received higher proportions of exogenous microeukaryotic OTUs compared to the upstream reservoirs, while at the seasonal scale, the sewage effluents and influents contributed higher exogenous microeukaryotes to river water in wet season than in dry season. Moreover, the swine and domestic wastewater led to the presence of Apicomplexa in wet season only, implying rainfall runoff may enhance the spread of parasitic microeukaryotes. Taken together, our study provides novel insights into the immigration patterns of microeukaryotes and their dominant supergroups between terrestrial and riverine habitats.


Assuntos
Ecossistema , Rios , Animais , China , Aprendizado de Máquina , Plâncton , Suínos , Qualidade da Água
11.
Sci Total Environ ; 721: 137767, 2020 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-32179350

RESUMO

Micropollutants have become of great concern, because of their disrupting effects on the structure and function of microbial communities. However, little is known about the relative importance of trace micropollutants on the aquatic prokaryotic communities as compared to the traditional physico-chemical characteristics, especially at different spatial dimensions. Here, we investigated free-living (FL) and particle-associated (PA) prokaryotic communities in a subtropical water reservoir, China, across seasons at horizontal (surface water) and vertical (depth-profile) scales by using 16S rRNA gene amplicon sequencing. Our results showed that the shared variances of physico-chemicals and micropollutants explained majority of the spatial variations in prokaryotic communities, suggesting a strong joint effect of the two abiotic categories on reservoir prokaryotic communities. Micropollutants appeared to exert strong independent influence on the core sub-communities (i.e., abundant and wide-spread taxa) than on the satellite (i.e., less abundant and narrow-range taxa) counterparts. The pure effect of micropollutants on both core and satellite sub-communities from FL and PA fractions was ~1.5 folds greater than that of physico-chemical factors at the horizontal scale, whereas an opposite effect was observed at the vertical scale. Moreover, eight micropollutants including anti-fungal agents, antibiotics, bisphenol analogues, stimulant and UV-filter were identified as the major disrupting compounds with strong associations with core taxa of typical freshwater prokaryotes. Altogether, we concluded that the ecological disrupting effects of micropollutants on prokaryotic communities may vary along horizontal and vertical dimensions in freshwater ecosystems.


Assuntos
Microbiota , China , Água Doce , RNA Ribossômico 16S
12.
J Hazard Mater ; 385: 121584, 2020 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-31761650

RESUMO

Residues of bisphenol A (BPA) are ubiquitously detected in the surface water due to its widespread usage. This study systematically investigated the dissipation and kinetics of BPA under simulated hydrolysis, direct and indirect photolysis, bacterial degradation, microbial degradation and natural attenuation in microcosm. Structural equation modeling (SEM) by using partial least square method in path coefficient analysis suggested that the microbial degradation was the major factor involved in the natural attenuation of BPA. The potential transformation products were identified by using liquid chromatography high-resolution mass spectrometry (LC-HRMS) and stable isotope tracing technique by simultaneous performing gas chromatography combustion isotope ratio mass spectrometry (GC-C-IRMS) and gas chromatography mass spectrometry (GC-MS). A total of fourteen including three novel transformation products of BPA were identified to indicate five possible pathways. An increased yield of labeled (δ13C) CO2 and detection of 13C-labeled phospholipid fatty acids (PLFAs) indicated the mineralization of BPA and possible utilization of BPA or its transformation products by microbes for cellular membrane synthesis, respectively.


Assuntos
Compostos Benzidrílicos/metabolismo , Fenóis/metabolismo , Poluentes Químicos da Água/metabolismo , Animais , Bactérias/metabolismo , Compostos Benzidrílicos/análise , Compostos Benzidrílicos/química , Compostos Benzidrílicos/toxicidade , Isótopos de Carbono/química , Clorófitas/efeitos dos fármacos , Daphnia/efeitos dos fármacos , Ecologia , Peixes , Cromatografia Gasosa-Espectrometria de Massas , Cinética , Fenóis/análise , Fenóis/química , Fenóis/toxicidade , Rios/química , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/química , Poluentes Químicos da Água/toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA