RESUMO
The Mediterranean cone snail, Lautoconus ventricosus, is currently considered a single species inhabiting the whole Mediterranean basin and the adjacent Atlantic coasts. Yet, no population genetic study has assessed its taxonomic status. Here, we collected 245 individuals from 75 localities throughout the Mediterranean Sea and used cox1 barcodes, complete mitochondrial genomes, and genome skims to test whether L. ventricosus represents a complex of cryptic species. The maximum likelihood phylogeny based on complete mitochondrial genomes recovered six main clades (hereby named blue, brown, green, orange, red, and violet) with sufficient sequence divergence to be considered putative species. On the other hand, phylogenomic analyses based on 437 nuclear genes only recovered four out of the six clades: blue and orange clades were thoroughly mixed and the brown one was not recovered. This mito-nuclear discordance revealed instances of incomplete lineage sorting and introgression, and may have caused important differences in the dating of main cladogenetic events. Species delimitation tests proposed the existence of at least three species: green, violet, and red + blue + orange (i.e., cyan). Green plus cyan (with sympatric distributions) and violet, had West and East Mediterranean distributions, respectively, mostly separated by the Siculo-Tunisian biogeographical barrier. Morphometric analyses of the shell using species hypotheses as factor and shell length as covariate showed that the discrimination power of the studied parameters was only 70.2%, reinforcing the cryptic nature of the uncovered species, and the importance of integrative taxonomic approaches considering morphology, ecology, biogeography, and mitochondrial and nuclear population genetic variation.
Assuntos
Genoma Mitocondrial , Mitocôndrias , Humanos , Animais , Filogenia , Mitocôndrias/genética , Especiação Genética , Caramujos/genética , DNA Mitocondrial/genéticaRESUMO
The transcriptomes of the venom glands of 13 closely related species of vermivorous cones endemic to West Africa from genera Africonus and Varioconus were sequenced and venom repertoires compared within a phylogenetic framework using one Kalloconus species as outgroup. The total number of conotoxin precursors per species varied between 108 and 221. Individuals of the same species shared about one-fourth of the total conotoxin precursors. The number of common sequences was drastically reduced in the pairwise comparisons between closely related species, and the phylogenetical signal was totally eroded at the inter-generic level (no sequence was identified as shared derived), due to the intrinsic high variability of these secreted peptides. A common set of four conotoxin precursor superfamilies (T, O1, O2 and M) was expanded in all studied cone species, and thus, they are considered the basic venom toolkit for hunting and defense in the West African vermivorous cone snails. Maximum-likelihood ancestral character reconstructions inferred shared conotoxin precursors preferentially at internal nodes close to the tips of the phylogeny (between individuals and between closely related species) as well as in the common ancestor of Varioconus. Besides the common toolkit, the two genera showed significantly distinct catalogues of conotoxin precursors in terms of type of superfamilies present and the abundance of members per superfamily, but had similar relative expression levels indicating functional convergence. Differential expression comparisons between vermivorous and piscivorous cones highlighted the importance of the A and S superfamilies for fish hunting and defense.
Assuntos
Conotoxinas/genética , Caramujo Conus , Peçonhas/genética , África Ocidental , Animais , Biologia Computacional , TranscriptomaRESUMO
BACKGROUND: Due to their great species and ecological diversity as well as their capacity to produce hundreds of different toxins, cone snails are of interest to evolutionary biologists, pharmacologists and amateur naturalists alike. Taxonomic identification of cone snails still relies mostly on the shape, color, and banding patterns of the shell. However, these phenotypic traits are prone to homoplasy. Therefore, the consistent use of genetic data for species delimitation and phylogenetic inference in this apparently hyperdiverse group is largely wanting. Here, we reconstruct the phylogeny of the cones endemic to Cabo Verde archipelago, a well-known radiation of the group, using mitochondrial (mt) genomes. RESULTS: The reconstructed phylogeny grouped the analyzed species into two main clades, one including Kalloconus from West Africa sister to Trovaoconus from Cabo Verde and the other with a paraphyletic Lautoconus due to the sister group relationship of Africonus from Cabo Verde and Lautoconus ventricosus from Mediterranean Sea and neighboring Atlantic Ocean to the exclusion of Lautoconus endemic to Senegal (plus Lautoconus guanche from Mauritania, Morocco, and Canary Islands). Within Trovaoconus, up to three main lineages could be distinguished. The clade of Africonus included four main lineages (named I to IV), each further subdivided into two monophyletic groups. The reconstructed phylogeny allowed inferring the evolution of the radula in the studied lineages as well as biogeographic patterns. The number of cone species endemic to Cabo Verde was revised under the light of sequence divergence data and the inferred phylogenetic relationships. CONCLUSIONS: The sequence divergence between continental members of the genus Kalloconus and island endemics ascribed to the genus Trovaoconus is low, prompting for synonymization of the latter. The genus Lautoconus is paraphyletic. Lautoconus ventricosus is the closest living sister group of genus Africonus. Diversification of Africonus was in allopatry due to the direct development nature of their larvae and mainly triggered by eustatic sea level changes during the Miocene-Pliocene. Our study confirms the diversity of cone endemic to Cabo Verde but significantly reduces the number of valid species. Applying a sequence divergence threshold, the number of valid species within the sampled Africonus is reduced to half.
Assuntos
Genoma Mitocondrial , Filogenia , Caramujos/classificação , Caramujos/genética , Animais , Sequência de Bases , Cabo Verde , DNA Mitocondrial/genética , Variação Genética , Análise de Sequência de DNA , Especificidade da EspécieRESUMO
Cone snails attain in Senegal one of their highest peaks of species diversity throughout the continental coast of Western Africa. A total of 15 endemic species have been described, all placed in the genus Lautoconus. While there is ample data regarding the morphology of the shell and the radular tooth of these species, virtually nothing is known regarding the genetic diversity and phylogenetic relationships of one of the most endangered groups of cones. In this work, we determined the complete or near-complete (only lacking the control region) mitochondrial (mt) genomes of 17 specimens representing 11 endemic species (Lautoconus belairensis, Lautoconus bruguieresi, Lautoconus cacao, Lautoconus cloveri, Lautoconus cf. echinophilus, Lautoconus guinaicus, Lautoconus hybridus, Lautoconus senegalensis, Lautoconus mercator, Lautoconus taslei, and Lautoconus unifasciatus). We also sequenced the complete mt genome of Lautoconus guanche from the Canary Islands, which has been related to the cones endemic to Senegal. All mt genomes share the same gene arrangement, which conforms to the consensus reported for Conidae, Neogastropoda and Caenogastropoda. Phylogenetic analyses using probabilistic methods recovered three major lineages, whose divergence coincided in time with sea level and ocean current changes as well as temperature fluctuations during the Messinian salinity crisis and the Plio-Pleistocene transition. Furthermore, the three lineages corresponded to distinct types of radular tooth (robust, small, and elongated), suggesting that dietary specialization could be an additional evolutionary driver in the diversification of the cones endemic to Senegal. The reconstructed phylogeny showed several cases of phenotypic convergence (cryptic species) and questions the validity of some species (ecotypes or phenotypic plasticity), both results having important taxonomic and conservation consequences.
Assuntos
Genoma Mitocondrial , Caramujos/classificação , Caramujos/genética , África Ocidental , Animais , Sequência de Bases , Variação Genética , Filogenia , Senegal , EspanhaRESUMO
BACKGROUND: Genomes are powerful resources to understand the evolutionary mechanisms underpinning the origin and diversification of the venoms of cone snails (Conidae: Caenogastropoda) and could aid in the development of novel drugs. FINDINGS: Here, we used PacBio continuous long reads and Omni-C data to assemble the chromosome-level genome of Kalloconus canariensis, a vermivorous cone endemic to the Canary Islands. The final genome size was 2.87 Gb, with a N50 of 79.75 Mb and 91% of the reads located into the 35 largest scaffolds. Up to 55.80% of the genome was annotated as repetitive regions, being class I of transposable elements (16.65%) predominant. The annotation estimated 34,287 gene models. Comparative analysis of this genome with the 2 cone snail genomes released to date (Dendroconus betulinus and Lautoconus ventricosus) revealed similar genome sizes and organization, although chromosome sizes tended to be shorter in K. canariensis. Phylogenetic relationships within subclass Caenogastropoda were recovered with strong statistical support. The family Conidae was recovered as a clade, with K. canariensis plus L. ventricosus sister to D. betulinus. CONCLUSIONS: Despite the great diversity of cone snails (>900 species) and their venoms (hundreds of peptides per species), only 2 recently reported genomes are available for the group. The high-quality chromosome-level assembly of K. canariensis will be a valuable reference for studying the origin and evolution of conotoxin genes as well as whole-genome duplication events during gastropod evolution.
Assuntos
Genômica , Peçonhas , Animais , Filogenia , Cromossomos/genética , Caramujos/genéticaRESUMO
BACKGROUND: Venoms are deadly weapons to subdue prey or deter predators that have evolved independently in many animal lineages. The genomes of venomous animals are essential to understand the evolutionary mechanisms involved in the origin and diversification of venoms. RESULTS: Here, we report the chromosome-level genome of the venomous Mediterranean cone snail, Lautoconus ventricosus (Caenogastropoda: Conidae). The total size of the assembly is 3.59 Gb; it has high contiguity (N50 = 93.53 Mb) and 86.6 Mb of the genome assembled into the 35 largest scaffolds or pseudochromosomes. On the basis of venom gland transcriptomes, we annotated 262 complete genes encoding conotoxin precursors, hormones, and other venom-related proteins. These genes were scattered in the different pseudochromosomes and located within repetitive regions. The genes encoding conotoxin precursors were normally structured into 3 exons, which did not necessarily coincide with the 3 structural domains of the corresponding proteins. Additionally, we found evidence in the L. ventricosus genome for a past whole-genome duplication event by means of conserved gene synteny with the Pomacea canaliculata genome, the only one available at the chromosome level within Caenogastropoda. The whole-genome duplication event was further confirmed by the presence of a duplicated hox gene cluster. Key genes for gastropod biology including those encoding proteins related to development, shell formation, and sex were located in the genome. CONCLUSIONS: The new high-quality L. ventricosus genome should become a reference for assembling and analyzing new gastropod genomes and will contribute to future evolutionary genomic studies among venomous animals.
Assuntos
Conotoxinas , Caramujo Conus , Animais , Caramujo Conus/genética , Genoma , Caramujos/genética , PeçonhasRESUMO
The transcriptome of the venom duct of the Atlantic piscivorous cone species Chelyconus ermineus (Born, 1778) was determined. The venom repertoire of this species includes at least 378 conotoxin precursors, which could be ascribed to 33 known and 22 new (unassigned) protein superfamilies, respectively. Most abundant superfamilies were T, W, O1, M, O2, and Z, accounting for 57% of all detected diversity. A total of three individuals were sequenced showing considerable intraspecific variation: each individual had many exclusive conotoxin precursors, and only 20% of all inferred mature peptides were common to all individuals. Three different regions (distal, medium, and proximal with respect to the venom bulb) of the venom duct were analyzed independently. Diversity (in terms of number of distinct members) of conotoxin precursor superfamilies increased toward the distal region whereas transcripts detected toward the proximal region showed higher expression levels. Only the superfamilies A and I3 showed statistically significant differential expression across regions of the venom duct. Sequences belonging to the alpha (motor cabal) and kappa (lightning-strike cabal) subfamilies of the superfamily A were mainly detected in the proximal region of the venom duct. The mature peptides of the alpha subfamily had the α4/4 cysteine spacing pattern, which has been shown to selectively target muscle nicotinic-acetylcholine receptors, ultimately producing paralysis. This function is performed by mature peptides having a α3/5 cysteine spacing pattern in piscivorous cone species from the Indo-Pacific region, thereby supporting a convergent evolution of piscivory in cones.
Assuntos
Conotoxinas/metabolismo , Caramujo Conus/genética , Caramujo Conus/metabolismo , Animais , Evolução Biológica , Comportamento Alimentar , Família Multigênica , TranscriptomaRESUMO
The effects of two different slipping methods on the survival, physical and physiological response of sardines, Sardina pilchardus, captured in a purse-seine fishery were investigated in southern Portugal. Sardines were collected and transferred into holding tanks onboard a commercial fishing vessel after being captured, crowded and deliberately released using two slipping procedures: standard and modified. The standard slipping procedure aggregated fish at high densities and made them "roll over" the floatline, while the modified procedure aggregated the fish at moderate densities and enabled them to escape through an opening created by adding weights to the floatline. Both slipping methods were compared with minimally harmed non-slipped sardines (sardines collected from the loose pocket of the purse seine). Survival rates were monitored in captivity over 28 days using three replicates for each treatment. The estimated survival of sardines was 43.6% for the non-slipped fish, 44.7% for the modified slipping and 11.7% for the standard slipping treatments. Scale loss indicated the level of physical impact experienced, with dead fish from the non-slipped and modified slipping technique showing significantly lower scale loss than those fish from the standard slipping treatment within the same period. Of the physiological indicators of stress measured, cortisol, glucose, lactate and osmolality attained peak values during slipping and up to the first hours after introduction to captivity. This work indicates that although delayed mortality after release may be substantial, appropriately modified slipping techniques significantly enhance survival of slipped sardines.