Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Drug Metab Dispos ; 44(12): 1940-1948, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27621203

RESUMO

Traditional in vitro human liver cell culture models lose key hepatic functions such as metabolic activity during short-term culture. Advanced three-dimensional (3D) liver coculture platforms offer the potential for extended hepatocyte functionality and allow for the study of more complex biologic interactions, which can improve and refine human drug safety evaluations. Here, we use a perfusion flow 3D microreactor platform for the coculture of cryopreserved primary human hepatocytes and Kupffer cells to study the regulation of cytochrome P450 3A4 isoform (CYP3A4) activity by chronic interleukin 6 (IL-6)-mediated inflammation over 2 weeks. Hepatocyte cultures remained stable over 2 weeks, with consistent albumin production and basal IL-6 levels. Direct IL-6 stimulation that mimics an inflammatory state induced a dose-dependent suppression of CYP3A4 activity, an increase in C-reactive protein (CRP) secretion, and a decrease in shed soluble interleukin-6 receptor (IL-6R) levels, indicating expected hepatic IL-6 bioactivity. Tocilizumab, an anti-IL-6R monoclonal antibody used to treat rheumatoid arthritis, has been demonstrated clinically to impact small molecule drug pharmacokinetics by modulating cytochrome P450 enzyme activities, an effect not observed in traditional hepatic cultures. We have now recapitulated the clinical observation in a 3D bioreactor system. Tocilizumab was shown to desuppress CYP3A4 activity while reducing the CRP concentration after 72 hours in the continued presence of IL-6. This change in CYP3A4 activity decreased the half-life and area under the curve up to the last measurable concentration (AUClast) of the small molecule CYP3A4 substrate simvastatin hydroxy acid, measured before and after tocilizumab treatment. We conclude that next-generation in vitro liver culture platforms are well suited for these types of long-term treatment studies and show promise for improved drug safety assessment.


Assuntos
Anticorpos Monoclonais/metabolismo , Interações Medicamentosas/fisiologia , Fígado/metabolismo , Bibliotecas de Moléculas Pequenas/metabolismo , Anticorpos Monoclonais Humanizados/metabolismo , Proteína C-Reativa/metabolismo , Células Cultivadas , Técnicas de Cocultura/métodos , Citocromo P-450 CYP3A/metabolismo , Meia-Vida , Hepatócitos/metabolismo , Humanos , Inflamação/metabolismo , Interleucina-6/metabolismo , Células de Kupffer/metabolismo
2.
Toxicol Pathol ; 43(4): 581-92, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25361751

RESUMO

ß-Secretase 1 (BACE1) represents an attractive target for the treatment of Alzheimer's disease. In the course of development of a novel small molecule BACE1 inhibitor (AMG-8718), retinal thinning was observed in a 1-month toxicity study in the rat. To further understand the lesion, an investigational study was conducted whereby rats were treated daily with AMG-8718 for 1 month followed by a 2-month treatment-free phase. The earliest detectable change in the retina was an increase in autofluorescent granules in the retinal pigment epithelium (RPE) on day 5; however, there were no treatment-related light microscopic changes observed in the neuroretina and no changes observed by fundus autofluorescence or routine ophthalmoscopic examination after 28 days of dosing. Following 2 months of recovery, there was significant retinal thinning attributed to loss of photoreceptor nuclei from the outer nuclear layer. Electroretinographic changes were observed as early as day 14, before any microscopic evidence of photoreceptor loss. BACE1 knockout rats were generated and found to have normal retinal morphology indicating that the retinal toxicity induced by AMG-8718 was likely off-target. These results suggest that AMG-8718 impairs phagolysosomal function in the rat RPE, which leads to photoreceptor dysfunction and ultimately loss of photoreceptors.


Assuntos
Secretases da Proteína Precursora do Amiloide/antagonistas & inibidores , Ácido Aspártico Endopeptidases/antagonistas & inibidores , Benzopiranos/toxicidade , Inibidores Enzimáticos/toxicidade , Piridinas/toxicidade , Retina/efeitos dos fármacos , Doenças Retinianas/induzido quimicamente , Compostos de Espiro/toxicidade , Animais , Eletrorretinografia , Masculino , Ratos , Ratos Sprague-Dawley , Retina/enzimologia , Retina/patologia , Doenças Retinianas/enzimologia , Tomografia de Coerência Óptica
3.
Cancer Cell ; 5(3): 263-73, 2004 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-15050918

RESUMO

Breast tissue from healthy women contains variant mammary epithelial cells (vHMEC) exhibiting p16INK4a promoter hypermethylation both in vivo and in vitro. When continuously cultured, vHMEC acquire telomeric dysfunction and produce the types of chromosomal abnormalities seen in premalignant lesions of cancer. We find that late passage vHMEC express elevated prostaglandin cyclo-oxygenase 2 (COX-2), which contributes to increased prostaglandin synthesis, angiogenic activity, and invasive ability. These data demonstrate the existence of human mammary epithelial cells with the potential to acquire multiple genomic alterations and phenotypes associated with malignant cells. Moreover, COX-2 overexpression coincides with focal areas of p16INK4a hypermethylation in vivo, creating ideal candidates as precursors to breast cancer. These putative precursors can be selectively eliminated upon exposure to COX-2 inhibitors in vitro.


Assuntos
Mama/metabolismo , Inibidor p16 de Quinase Dependente de Ciclina/metabolismo , Células Epiteliais/metabolismo , Isoenzimas/metabolismo , Lesões Pré-Cancerosas/metabolismo , Prostaglandina-Endoperóxido Sintases/metabolismo , Apoptose/fisiologia , Mama/fisiopatologia , Aberrações Cromossômicas , Ciclo-Oxigenase 2 , Dano ao DNA/fisiologia , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Imuno-Histoquímica , Proteínas de Membrana , Metilação , Neovascularização Patológica/metabolismo , Prostaglandinas/metabolismo , Telomerase/metabolismo
4.
Toxicol Pathol ; 39(5): 809-22, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21677315

RESUMO

Seven novel and potent Raf small molecule kinase inhibitors (C1-7) were evaluated in seven-day oral repeat dose rat toxicity studies. All compounds tested induced hyperplasia in multiple tissues. Consistently affected was stratified squamous epithelium at a number of sites and transitional epithelium of urinary bladder and kidney. A seven-day time course study in rats showed morphologic evidence of epithelial proliferation in the nonglandular stomach within four to five hours after a single dose of C-1. Similar indications of cellular proliferation were observed in the urinary bladder by day 2 and in the heart, kidney, and liver by day 3. Transcriptional evidence of proliferation in the urinary bladder was detected within four to five hours after a single dose consistent with activation of the PI3K/AKT and ERK/MAPK pathways. In a twenty-eight-day rat toxicity study of C-1, hyperplasia was observed in the esophagus, nonglandular stomach, skin, urinary bladder, kidney, and heart. Hyperplasia of transitional epithelium of the urinary bladder was particularly severe and in one female rat was accompanied by the presence of a transitional cell carcinoma. These results suggest that these Raf inhibitors induce early transcriptional changes driving unchecked cell proliferation, resulting in marked tissue hyperplasia that can progress to carcinoma within a short time frame.


Assuntos
Inibidores de Proteínas Quinases/toxicidade , Proteínas Proto-Oncogênicas B-raf/antagonistas & inibidores , Neoplasias da Bexiga Urinária/induzido quimicamente , Neoplasias da Bexiga Urinária/enzimologia , Animais , Proliferação de Células/efeitos dos fármacos , Análise por Conglomerados , Feminino , Histocitoquímica , Hiperplasia , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Masculino , Mutação , Miocárdio/patologia , Proteínas Proto-Oncogênicas B-raf/genética , Proteínas Proto-Oncogênicas B-raf/metabolismo , Ratos , Ratos Sprague-Dawley , Nervo Isquiático/efeitos dos fármacos , Nervo Isquiático/patologia , Estômago/efeitos dos fármacos , Estômago/patologia , Distribuição Tecidual , Testes de Toxicidade Crônica , Bexiga Urinária/efeitos dos fármacos , Bexiga Urinária/patologia , Neoplasias da Bexiga Urinária/metabolismo , Neoplasias da Bexiga Urinária/patologia
5.
Chem Res Toxicol ; 23(6): 1025-33, 2010 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-20521778

RESUMO

The key to the discovery of new pharmaceuticals is to develop molecules that interact with the intended target and minimize interaction with unintended molecular targets, therefore minimizing toxicity. This is aided by the use of various in vitro selectivity assays that are used to select agents most potent for the desired target. Typically, molecules from similar chemical series, with similar in vitro potencies, are expected to yield comparable in vivo pharmacological and toxicological profiles, predictive of target effects. However, in this study, we investigated the in vivo effects of two analogue compounds that similarly inhibit several receptor tyrosine kinases such as vascular endothelial growth factor receptor 1 (VEGFR/Flt1), vascular endothelial growth factor 2 (VEGFR2/kinase domain receptor/Flk-1), vascular endothelial growth factor receptor 3 (VEGFR3/Flt4), platelet-derived growth factor receptor (PDGFR), and Kit receptors, which bear similar chemical structures, have comparable potencies, but differ markedly in their rodent toxicity profiles. Global gene expression data were used to generate hypotheses regarding the existence of toxicity triggers that would reflect the perturbation of signaling in multiple organs such as the liver, adrenal glands, and the pancreas in response to compound treatment. We concluded that differences in pharmacokinetic properties of the two analogues, such as volume of distribution, half-life, and organ concentrations, resulted in marked differences in the chemical burden on target organs and may have contributed to the vast differences in toxicity profiles observed with the two otherwise similar molecules. We propose including select toxicokinetic parameters such as V(ss), T(1/2), and T(max) as additional criteria that could be used to rank order compounds from the same pharmacological series to possibly minimize organ toxicity. Assessment of toxicokinetics is not an atypical activity on toxicology studies, even in early screening studies; however, these data may not always be used in decision making for selecting or eliminating one compound over another. Finally, we illustrate that in vivo gene expression profiles can serve as a complementary assessor of this activity and simultaneously help provide an assessment of on or off-target biological activity.


Assuntos
Expressão Gênica/efeitos dos fármacos , Inibidores de Proteínas Quinases/efeitos adversos , Inibidores de Proteínas Quinases/farmacocinética , Proteínas Proto-Oncogênicas c-kit/antagonistas & inibidores , Receptores do Fator de Crescimento Derivado de Plaquetas/antagonistas & inibidores , Receptores de Fatores de Crescimento do Endotélio Vascular/antagonistas & inibidores , Animais , Genômica , Masculino , Inibidores de Proteínas Quinases/química , Ratos , Ratos Sprague-Dawley , Receptor 1 de Fatores de Crescimento do Endotélio Vascular/antagonistas & inibidores , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/antagonistas & inibidores , Receptor 3 de Fatores de Crescimento do Endotélio Vascular/antagonistas & inibidores
6.
Biotechniques ; 45(3): 283-92, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-18778252

RESUMO

Genome-scale gene expression technologies are increasingly being applied for biological research as a whole and toxicological screening in particular. In order to monitor data quality and process drift, we adopted the use of two rat-tissue mixtures (brain, liver, kidney, and testis) previously introduced as RNA reference samples. These samples were processed every time a microarray experiment was hybridized, thereby verifying the comparability of the resulting expression data for cross-study comparison. This study presents the analysis of 21 technical replicates of these two mixed-tissue samples using Affymetrix RAE230_2 GeneChip over a period of 12 months. The results show that detection sensitivity, measured by the number of present and absent sequences, is robust, and data correlation, indicated by scatter plots, varies little over time. Receiver operating characteristic (ROC) curves show the sensitivity and specificity of the current measurements are consistent with arrays previously classified as well performing. Overall, this paper shows that the inclusion of standard samples during microarray labeling and hybridization experiments is useful to benchmark the performance of microarray experiments over time and allows discovery of any process drift that, if it occurs, may confound the comparison of these datasets.


Assuntos
Estudos de Avaliação como Assunto , Perfilação da Expressão Gênica/métodos , Análise de Sequência com Séries de Oligonucleotídeos/métodos , RNA/química , Animais , Área Sob a Curva , Benchmarking/métodos , Química Encefálica , Rim/química , Fígado/química , Masculino , Especificidade de Órgãos , RNA/isolamento & purificação , Curva ROC , Ratos , Ratos Sprague-Dawley , Padrões de Referência , Sensibilidade e Especificidade , Testículo/química
7.
Nucleic Acids Res ; 33(22): e187, 2005 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-16377776

RESUMO

The comparability and reliability of data generated using microarray technology would be enhanced by use of a common set of standards that allow accuracy, reproducibility and dynamic range assessments on multiple formats. We designed and tested a complex biological reagent for performance measurements on three commercial oligonucleotide array formats that differ in probe design and signal measurement methodology. The reagent is a set of two mixtures with different proportions of RNA for each of four rat tissues (brain, liver, kidney and testes). The design provides four known ratio measurements of >200 reference probes, which were chosen for their tissue-selectivity, dynamic range coverage and alignment to the same exemplar transcript sequence across all three platforms. The data generated from testing three biological replicates of the reagent at eight laboratories on three array formats provides a benchmark set for both laboratory and data processing performance assessments. Close agreement with target ratios adjusted for sample complexity was achieved on all platforms and low variance was observed among platforms, replicates and sites. The mixed tissue design produces a reagent with known gene expression changes within a complex sample and can serve as a paradigm for performance standards for microarrays that target other species.


Assuntos
Perfilação da Expressão Gênica/normas , Análise de Sequência com Séries de Oligonucleotídeos/normas , RNA Mensageiro/normas , Animais , Perfilação da Expressão Gênica/métodos , Masculino , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Sondas de Oligonucleotídeos , RNA Mensageiro/metabolismo , Ratos , Ratos Sprague-Dawley , Padrões de Referência , Reprodutibilidade dos Testes , Distribuição Tecidual
8.
Mol Biol Cell ; 13(8): 2585-97, 2002 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-12181331

RESUMO

Regulation of the hTERT gene encoding the telomerase catalytic subunit plays an important role in human cell senescence, immortalization, and carcinogenesis. By examining the activity of various deleted or mutated hTERT promoter fragments, we show that an E-box element downstream of the transcription initiation site is critical to differential hTERT transcription between the telomerase/hTERT-positive renal cell carcinoma cell line (RCC23) and its telomerase/hTERT-negative counterpart containing a transferred, normal chromosome 3 (RCC23+3). This E-box element mediated repression of hTERT transcription in RCC23+3 but not in RCC23. A copy number-dependent enhancement of the repression suggested active repression, rather than loss of activation, in RCC23+3. Endogenous expression levels of c-Myc or Mad1, which could activate or repress hTERT transcription when overexpressed, did not account for the differential hTERT transcription. Gel mobility shift assays identified the upstream stimulatory factors (USFs) as a major E-box-binding protein complex in both RCC23 and RCC23+3 and, importantly, detected an RCC23+3-specific, E-box-binding factor that was distinct from the USF and Myc/Mad families. The E-box-mediated repression was also active in normal human fibroblasts and epithelial cells and inactive in some, but not all, telomerase/hTERT-positive cancer cells. These findings provide evidence for an endogenous, repressive mechanism that actively functions in telomerase/hTERT-negative normal cells and becomes defective during carcinogenic processes, e.g., by an inactivation of the telomerase repressor gene on chromosome 3.


Assuntos
Elementos E-Box/genética , Regulação da Expressão Gênica , Telomerase/genética , Transcrição Gênica , Proteínas de Ciclo Celular , Cromossomos Humanos Par 3 , Proteínas de Ligação a DNA/metabolismo , Genes Reporter , Humanos , Mutagênese Sítio-Dirigida , Proteínas Nucleares , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Regiões Promotoras Genéticas , Proteínas Proto-Oncogênicas c-myc/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Telomerase/metabolismo , Telômero/metabolismo , Células Tumorais Cultivadas
9.
Bone ; 84: 148-159, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26721737

RESUMO

Inhibition of sclerostin with sclerostin antibody (Scl-Ab) has been shown to stimulate bone formation, decrease bone resorption, and increase bone mass in both animals and humans. To obtain insight into the temporal cellular and transcriptional changes in the osteoblast (OB) lineage associated with long-term Scl-Ab treatment, stereological and transcriptional analyses of the OB lineage were performed on lumbar vertebrae from aged ovariectomized rats. Animals were administered Scl-Ab 3 or 50mg/kg/wk or vehicle (VEH) for up to 26weeks (d183), followed by a treatment-free period (TFP). At 50mg/kg/wk, bone volume (BV/total volume [TV]) increased through d183 and declined during the TFP. Bone formation rate (BFR/bone surface [BS]) and total OB number increased through d29, then progressively declined, coincident with a decrease in total osteoprogenitor (OP) numbers from d29 through d183. Analysis of differentially expressed genes (DEGs) from microarray analysis of mRNA isolated from laser capture microdissection samples enriched for OB, lining cells, and osteocytes (OCy) revealed modules of genes that correlated with BFR/BS, BV/TV, and osteoblastic surface (Ob.S)/BS. Expression change of canonical Wnt target genes was similar in all three cell types at d8, including upregulation of Twist1 and Wisp1. At d29, the pattern of Wnt target gene expression changed in the OCy, with Twist1 returning to VEH level, sustained upregulation of Wisp1, and upregulation of several other Wnt targets that continued into the TFP. Predicted activation of pathways recognized to integrate with and regulate canonical Wnt signaling were also activated at d29 in the OCy. The most significantly affected pathways represented transcription factor signaling known to inhibit cell cycle progression (notably p53) and mitogenesis (notably c-Myc). These changes occurred at the time of peak BFR/BS and continued as BFR/BS declined during treatment, then trended toward VEH level in the TFP. Concurrent with this transcriptional switch was a reduction in OP numbers, an effect that would ultimately limit bone formation. This study confirms that the initial transcriptional response in response to Scl-Ab is activation of canonical Wnt signaling and the data demonstrate that there is induction of additional regulatory pathways in OCy with long-term treatment. The interactions between Wnt and p53/c-Myc signaling may be key in limiting OP populations, thus contributing to self-regulation of bone formation with continued Scl-Ab administration.


Assuntos
Anticorpos/farmacologia , Proteínas Morfogenéticas Ósseas/imunologia , Linhagem da Célula/efeitos dos fármacos , Marcadores Genéticos/imunologia , Osteoblastos/citologia , Osteoblastos/metabolismo , Ovariectomia , Transcrição Gênica/efeitos dos fármacos , Animais , Contagem de Células , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Modelos Biológicos , Tamanho do Órgão/efeitos dos fármacos , Osteoblastos/efeitos dos fármacos , Osteócitos/efeitos dos fármacos , Osteócitos/metabolismo , Osteogênese/efeitos dos fármacos , Fenótipo , Ratos Sprague-Dawley , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Células-Tronco/efeitos dos fármacos , Células-Tronco/metabolismo , Fatores de Tempo
10.
Mol Cancer Res ; 1(4): 300-11, 2003 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-12612058

RESUMO

Tamoxifen is a widely used breast cancer therapeutic and preventative agent. Although functioning as an estrogen antagonist at the cellular level, transcriptional profiling revealed that at the molecular level, tamoxifen functions largely as an agonist, virtually recapitulating the gene expression profile induced in breast cancer cells by estrogen. Remarkably, tamoxifen induces transcription factors and genes involved in promoting cell cycle progression including fos, myc, myb, cdc25a, cyclins E and A2, and stk15 with kinetics that paralleled that of cells cycling in response to estrogen, even though tamoxifen-treated cells are not transiting through the cell cycle. Induction of cell cycle-associated genes was specific for tamoxifen, and did not occur with raloxifene. However, cyclin D1 was a key estrogen-induced gene not expressed in response to tamoxifen or raloxifene but constitutively expressed in tamoxifen-resistant cells.


Assuntos
Antineoplásicos/farmacologia , Neoplasias da Mama/genética , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Genes cdc/fisiologia , Tamoxifeno/análogos & derivados , Tamoxifeno/farmacologia , Neoplasias da Mama/patologia , Divisão Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Estrogênios/metabolismo , Estrogênios/farmacologia , Perfilação da Expressão Gênica , Humanos , Análise de Sequência com Séries de Oligonucleotídeos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Tamoxifeno/metabolismo , Fatores de Tempo
11.
FASEB J ; 17(13): 1849-70, 2003 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-14519664

RESUMO

Estrogens and glucocorticoids have opposing effects on the female reproductive tract, but the molecular basis for this antagonism is poorly understood. We therefore examined the biological and transcriptional programs induced by estrogens and glucocorticoids in the uterus of immature female rats. Estradiol 17beta (E2) rapidly induced morphological changes reminiscent of an acute inflammatory response, including infiltration of eosinophils, edema in the stroma and myometrium, and a decrease in the height of luminal epithelial cells, whereas dexamethasone (Dex) only altered stromal cell morphology. When coadministered with E2, Dex completely blocked the proinflammatory effects of E2. Surprisingly, examination of E2 and Dex effects on gene expression using cDNA microarrays and real-time PCR revealed that these hormones had similar effects on the expression of many genes and that very few genes displayed antagonistic regulation. Together, these results indicate strong discord between the early biologic and genomic actions of estrogens and glucocorticoids and highlight a complex regulatory role for glucocorticoids and GR in the mammalian uterus.


Assuntos
Dexametasona/farmacologia , Antagonistas de Estrogênios/farmacologia , Glucocorticoides/farmacologia , Útero/efeitos dos fármacos , Animais , Interações Medicamentosas , Estradiol/farmacologia , Feminino , Perfilação da Expressão Gênica , Regulação da Expressão Gênica/efeitos dos fármacos , Genoma , Imuno-Histoquímica , Ratos , Receptores de Estrogênio/análise , Receptores de Estrogênio/imunologia , Receptores de Glucocorticoides/análise , Receptores de Glucocorticoides/imunologia , Fatores de Tempo , Útero/anatomia & histologia , Útero/metabolismo
12.
Mol Endocrinol ; 16(6): 1215-29, 2002 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-12040010

RESUMO

The steroid hormone estrogen can stimulate mitogenesis in hormone-responsive breast cancer epithelial cells. This action is attributed to the transcriptional activity of the ER, a ligand-dependent transcription factor. However, the exact molecular mechanism underlying estrogen-induced proliferation has yet to be completely elucidated. Using custom cDNA microarrays containing many genes implicated in cell cycle progression and DNA replication, we examined the gene expression of a hormone-responsive breast cancer cell line (MCF-7) treated with a mitogenic dose of estrogen in the absence of confounding growth factors found in serum. Gene expression changes were monitored 1, 4, 12, 24, 36, and 48 h after estrogen stimulation so that RNA levels at critical times throughout cell cycle progression could be monitored. Significant changes include the altered transcript levels of genes implicated in transcription, cellular signaling, and cell cycle checkpoints. At time points during which increased numbers of cells were progressing through S phase, a majority of the genes associated with the DNA replication fork were also found to be induced. The coexpression of DNA replication fork genes by estrogen without the support of serum growth factors indicates an important estrogen regulatory component of the molecular mechanism driving estrogen-induced mitogenesis.


Assuntos
Replicação do DNA/efeitos dos fármacos , Estradiol/farmacologia , Divisão Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Receptor alfa de Estrogênio , Receptor beta de Estrogênio , Etanol/farmacologia , Perfilação da Expressão Gênica , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , RNA Mensageiro/genética , Receptores de Estrogênio/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Células Tumorais Cultivadas
13.
Mol Endocrinol ; 17(10): 2070-83, 2003 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-12893882

RESUMO

The physiological responses of the rodent uterus to acute estrogen (E) dosing can be divided into early and late events. Examples of early responses include increased RNA transcription, hyperemia, and water imbibition 2 and 6 h following E administration respectively, whereas later responses include cycles of DNA synthesis and mitosis of epithelial cells beginning 10 and 16 h after E. The development of estrogen receptor (ER) knockout (ERKO) mice, combined with microarray technology, has allowed us to design a genomic approach to study the acute response of the rodent reproductive tract to E. To determine whether early and late biological responses are correlated with altered regulation of a single set of genes or distinct sets of genes characteristic of early and late responses, uterine RNA was obtained from ovariectomized mice that were treated with vehicle or with estradiol for 2 h (early) or 24 h (late). Samples were also prepared from identically treated mice that lacked either ERalpha (alphaERKO) or ERbeta (betaERKO) to address the relative contributions of the ERs in the uterine responses. Microarray analysis of the relative expression of 8700 mouse cDNAs indicated distinct clusters of genes that were regulated both positively and negatively by E in the early or late phases as well as clusters of genes regulated at both times. Both early and late responses by the betaERKO samples were indistinguishable from those of WT samples, whereas the alphaERKO showed little change in gene expression in response to E, indicating the predominant role for ERalpha in the genomic response. Further studies indicated that the genomic responses in samples from intermediate time points (6 h, 12 h) fall within the early or late clusters, rather than showing unique clusters regulated in the intermediary period. The use of this genomic approach has illustrated how physiological responses are reflected in genomic patterns. Furthermore, the identification of functional gene families that are regulated by E in the uterus combined with the utilization of genetically altered experimental animal models can help to uncover and define novel mechanisms of E action.


Assuntos
Estradiol/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Receptores de Estrogênio/fisiologia , Útero/metabolismo , Animais , Proteínas de Ciclo Celular/efeitos dos fármacos , Proteínas de Ciclo Celular/genética , Estradiol/análogos & derivados , Receptor alfa de Estrogênio , Receptor beta de Estrogênio , Feminino , Perfilação da Expressão Gênica , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Análise de Sequência com Séries de Oligonucleotídeos , Ovariectomia , RNA Mensageiro/genética , Receptores de Estrogênio/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transcrição Gênica
14.
Toxicol Sci ; 145(2): 283-95, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25752796

RESUMO

Off-target effects of drugs on nuclear hormone receptors (NHRs) may result in adverse effects in multiple organs/physiological processes. Reliable assessments of the NHR activities for drug candidates are therefore crucial for drug development. However, the highly permissive structures of NHRs for vastly different ligands make it challenging to predict interactions by examining the chemical structures of the ligands. Here, we report a detailed investigation on the agonistic and antagonistic activities of 615 known drugs or drug candidates against a panel of 6 NHRs: androgen, progesterone, estrogen α/ß, and thyroid hormone α/ß receptors. Our study revealed that 4.7 and 12.4% compounds have agonistic and antagonistic activities, respectively, against this panel of NHRs. Nonetheless, potent, unintended NHR hits are relatively rare among the known drugs, indicating that such interactions are perhaps not tolerated during drug development. However, we uncovered examples of compounds that unintentionally agonize or antagonize NHRs. In addition, a number of compounds showed multi-NHR activities, suggesting that the cross-talk between multiple NHRs co-operate to elicit in vivo effects. These data highlight the merits of counter screening drug candidate against NHRs during drug discovery/development.


Assuntos
Descoberta de Drogas/métodos , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos/etiologia , Disruptores Endócrinos/toxicidade , Antagonistas de Hormônios/toxicidade , Receptores Citoplasmáticos e Nucleares/efeitos dos fármacos , Sítios de Ligação , Ligação Competitiva , Linhagem Celular , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos/metabolismo , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos/prevenção & controle , Disruptores Endócrinos/química , Genes Reporter , Antagonistas de Hormônios/química , Humanos , Ligantes , Modelos Moleculares , Ligação Proteica , Conformação Proteica , Receptores Citoplasmáticos e Nucleares/química , Receptores Citoplasmáticos e Nucleares/genética , Receptores Citoplasmáticos e Nucleares/metabolismo , Medição de Risco , Espectrometria de Fluorescência , Transfecção
15.
Environ Health Perspect ; 112(4): 488-94, 2004 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-15033599

RESUMO

Within the International Life Sciences Institute Committee on Genomics, a working group was formed to focus on the application of microarray technology to preclinical assessments of drug-induced nephrotoxicity. As part of this effort, Sprague-Dawley rats were treated with the nephrotoxicant cisplatin at doses of 0.3-5 mg/kg over a 4- to 144-hr time course. RNA prepared from these animals was run on a variety of microarray formats at multiple sites. A set of 93 differentially expressed genes associated with cisplatin-induced renal injury was identified on the National Institute of Environmental Health Sciences (NIEHS) custom cDNA microarray platform using quadruplicate measurements of pooled animal RNA. The reproducibility of this profile of statistically significant gene changes on other platforms, in pooled and individual animal replicate samples, and in an independent study was investigated. A good correlation in response between platforms was found among the 48 genes in the NIEHS data set that could be matched to probes on the Affymetrix RGU34A array by UniGene identifier or sequence alignment. Similar results were obtained with genes that could be linked between the NIEHS and Incyte or PHASE-1 arrays. The degree of renal damage induced by cisplatin in individual animals was commensurate with the number of differentially expressed genes in this data set. These results suggest that gene profiles linked to specific types of tissue injury or mechanisms of toxicity and identified in well-performed replicated microarray experiments may be extrapolatable across platform technologies, laboratories, and in-life studies.


Assuntos
Antineoplásicos/toxicidade , Cisplatino/toxicidade , Perfilação da Expressão Gênica/métodos , Rim/efeitos dos fármacos , Rim/patologia , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Animais , Ratos , Ratos Sprague-Dawley , Reprodutibilidade dos Testes
16.
Environ Health Perspect ; 112(4): 460-4, 2004 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-15033596

RESUMO

Microarrays allow for the simultaneous measurement of changes in the levels of thousands of messenger RNAs within a single experiment. As such, the potential for the application of transcription profiling to preclinical safety assessment and mechanism-based risk assessment is profound. However, several practical and technical challenges remain. Among these are nomenclature issues, platform-specific data formats, and the lack of uniform analysis methods and tools. Experiments were designed to address biological, technical, and methodological variability, to evaluate different approaches to data analysis, and to understand the application of the technology to other profiling methodologies and to mechanism-based risk assessment. These goals were addressed using experimental information derived from analysis of the biological response to three mechanistically distinct nephrotoxins: cisplatin, gentamicin, and puromycin aminonucleoside. In spite of the technical challenges, the transcription profiling data yielded mechanistically and topographically valuable information. The analyses detailed in the articles from the Nephrotoxicity Working Group of the International Life Sciences Institute Health and Environmental Sciences Institute suggest at least equal sensitivity of microarray technology compared to traditional end points. Additionally, microarray analysis of these prototypical nephrotoxicants provided an opportunity for the development of candidate bridging biomarkers of nephrotoxicity. The potential future extension of these applications for risk assessment is also discussed.


Assuntos
Perfilação da Expressão Gênica , Rim/efeitos dos fármacos , Rim/patologia , Análise de Sequência com Séries de Oligonucleotídeos , Animais , Antibacterianos/toxicidade , Antimetabólitos Antineoplásicos/toxicidade , Cisplatino/toxicidade , Relação Dose-Resposta a Droga , Gentamicinas/toxicidade , Masculino , Puromicina/toxicidade , Ratos , Ratos Sprague-Dawley , Reprodutibilidade dos Testes , Medição de Risco
17.
Environ Health Perspect ; 112(4): 465-79, 2004 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-15033597

RESUMO

This study, designed and conducted as part of the International Life Sciences Institute working group on the Application of Genomics and Proteomics, examined the changes in the expression profile of genes associated with the administration of three different nephrotoxicants--cisplatin, gentamicin, and puromycin--to assess the usefulness of microarrays in the understanding of mechanism(s) of nephrotoxicity. Male Sprague-Dawley rats were treated with daily doses of puromycin (5-20 mg/kg/day for 21 days), gentamicin (2-240 mg/kg/day for 7 days), or a single dose of cisplatin (0.1-5 mg/kg). Groups of rats were sacrificed at various times after administration of these compounds for standard clinical chemistry, urine analysis, and histological evaluation of the kidney. RNA was extracted from the kidney for microarray analysis. Principal component analysis and gene expression-based clustering of compound effects confirmed sample separation based on dose, time, and degree of renal toxicity. In addition, analysis of the profile components revealed some novel changes in the expression of genes that appeared to be associated with injury in specific portions of the nephron and reflected the mechanism of action of these various nephrotoxicants. For example, although puromycin is thought to specifically promote injury of the podocytes in the glomerulus, the changes in gene expression after chronic exposure of this compound suggested a pattern similar to the known proximal tubular nephrotoxicants cisplatin and gentamicin; this prediction was confirmed histologically. We conclude that renal gene expression profiling coupled with analysis of classical end points affords promising opportunities to reveal potential new mechanistic markers of renal toxicity.


Assuntos
Perfilação da Expressão Gênica , Marcadores Genéticos , Rim/efeitos dos fármacos , Rim/patologia , Análise de Sequência com Séries de Oligonucleotídeos , Animais , Antibacterianos/toxicidade , Antimetabólitos Antineoplásicos/toxicidade , Antineoplásicos/toxicidade , Cisplatino/toxicidade , Relação Dose-Resposta a Droga , Determinação de Ponto Final , Gentamicinas/toxicidade , Masculino , Puromicina/toxicidade , Ratos , Ratos Sprague-Dawley
18.
Toxicol Sci ; 69(2): 306-16, 2002 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-12377979

RESUMO

Human exposure to arsenic, a ubiquitous and toxic environmental pollutant, is associated with an increased incidence of skin cancer. However, the mechanism(s) associated with AsIII-mediated toxicity and carcinogenesis at low levels of exposure remains elusive. Aberrations in cell proliferation, oxidative damage, and DNA-repair fidelity have been implicated in sodium arsenite (AsIII)-mediated carcinogenicity and toxicity, but these events have been examined in isolation in the majority of biological models of arsenic exposure. We hypothesized that the simultaneous interaction of these effects may be important in arsenic-mediated neoplasia in the skin. To evaluate this, normal human epidermal keratinocytes (NHEK) were exposed to nontoxic doses (0.005-5 micro M) of AsIII and monitored for several physiological endpoints at the times when cells were harvested for gene expression measurements (1-24 h). Two-fluor cDNA microarray analyses indicated that AsIII treatment decreased the expression of genes associated with DNA repair (e.g., p53 and Damage-specific DNA-binding protein 2) and increased the expression of genes indicative of the cellular response to oxidative stress (e.g., Superoxide dismutase 1, NAD(P)H quinone oxidoreductase, and Serine/threonine kinase 25). AsIII also modulated the expression of certain transcripts associated with increased cell proliferation (e.g., Cyclin G1, Protein kinase C delta), oncogenes, and genes associated with cellular transformation (e.g., Gro-1 and V-yes). These observations correlated with measurements of cell proliferation and mitotic measurements as AsIII treatment resulted in a dose-dependent increase in cellular mitoses at 24 h and an increase in cell proliferation at 48 h of exposure. Data in this manuscript demonstrates that AsIII exposure simultaneously modulates DNA repair, cell proliferation, and redox-related gene expression in nontransformed, normal NHEK. It is anticipated that data in this report will serve as a foundation for furthering our knowledge of AsIII-regulated gene expression in skin and other tissues and contribute to a better understanding of arsenic toxicity and carcinogenesis.


Assuntos
Arsenitos/toxicidade , Dano ao DNA , Reparo do DNA/efeitos dos fármacos , Queratinócitos/efeitos dos fármacos , Acetilcisteína/farmacologia , Northern Blotting , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , DNA Complementar/biossíntese , DNA Complementar/genética , Sequestradores de Radicais Livres/farmacologia , Expressão Gênica/efeitos dos fármacos , Humanos , Queratinócitos/metabolismo , Índice Mitótico , Análise de Sequência com Séries de Oligonucleotídeos , Pele/citologia , Pele/efeitos dos fármacos , Timidina/metabolismo , Transcrição Gênica/efeitos dos fármacos
19.
Toxicol Sci ; 69(2): 409-23, 2002 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-12377990

RESUMO

In humans, exposure to high levels of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) is associated with chronic obstructive pulmonary disease and lung cancer. While several studies have shown that the lung is a target organ for TCDD toxicity, little is known on the specific biological pathways altered by TCDD. Studies have shown that the transcriptional response of TCDD (in vivo and in vitro) is complex, and exhibits cell type and tissue specificity. Thus, the purpose of this study was to look at global and concentration-dependent effects of TCDD on gene expression in human lung cells. Gene expression profiling of both a nontumorigenic (HPL1A) and a malignant, tumorigenic lung cell line (A549) was performed by microarray dual fluorescence hybridizations in cells treated with increasing concentrations of TCDD (0, 0.1, 1, 10 nM) for 24 h. Real time RT-PCR was used to verify alterations in specific genes. Results showed that 68 out of 2091 genes were changed in each cell line, and 15 of those genes were found altered in both cell lines. Common gene responses altered by TCDD were identified and included known xenobiotic metabolizing genes, genes known to alter cell cycle, as well as genes that are involved with cell signaling and that mediate cell motility or communication. Cell line specific differences in gene expression were found that indicate the nonmalignant HPL1A cells are retinoic acid responsive. In addition, TCDD altered specific immunomodulatory genes in the HPL1A cells. These data show that TCDD alters multiple integrated networks of signaling pathways associated with pulmonary disease, particularly that of lung cancer.


Assuntos
Carcinógenos/toxicidade , Carcinoma/patologia , Células Epiteliais/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Mutagênicos/toxicidade , Dibenzodioxinas Policloradas/toxicidade , Algoritmos , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular , DNA Complementar/metabolismo , Corantes Fluorescentes , Humanos , Sistema Imunitário/efeitos dos fármacos , Hibridização in Situ Fluorescente , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/patologia , Análise de Sequência com Séries de Oligonucleotídeos , RNA/biossíntese , RNA/isolamento & purificação , Receptores de Hidrocarboneto Arílico/efeitos dos fármacos , Receptores de Hidrocarboneto Arílico/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais/efeitos dos fármacos , Células Tumorais Cultivadas
20.
Toxicol Sci ; 67(2): 219-31, 2002 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-12011481

RESUMO

The application of gene expression profiling technology to examine multiple genes and signaling pathways simultaneously promises a significant advance in understanding toxic mechanisms to ultimately aid in protection of public health. Public and private efforts in the new field of toxicogenomics are focused on populating databases with gene expression profiles of compounds where toxicological and pathological endpoints are well characterized. The validity and utility of a toxicogenomics is dependent on whether gene expression profiles that correspond to different chemicals can be distinguished. The principal hypothesis underlying a toxicogenomic or pharmacogenomic strategy is that chemical-specific patterns of altered gene expression will be revealed using high-density microarray analysis of tissues from exposed organisms. Analyses of these patterns should allow classification of toxicants and provide important mechanistic insights. This report provides a verification of this hypothesis. Patterns of gene expression corresponding to liver tissue derived from chemically exposed rats revealed similarity in gene expression profiles between animals treated with different agents from a common class of compounds, peroxisome proliferators [clofibrate (ethyl-p-chlorophenoxyisobutyrate), Wyeth 14,643 ([4-chloro-6(2,3-xylidino)-2-pyrimidinylthio]acetic acid), and gemfibrozil (5-2[2,5-dimethylphenoxy]2-2-dimethylpentanoic acid)], but a very distinct gene expression profile was produced using a compound from another class, enzyme inducers (phenobarbital).


Assuntos
Perfilação da Expressão Gênica/métodos , Expressão Gênica , Genômica , Proliferadores de Peroxissomos/toxicidade , Fenobarbital/toxicidade , Animais , Clofibrato/química , Clofibrato/toxicidade , Biologia Computacional , DNA Complementar/análise , Genfibrozila/química , Genfibrozila/toxicidade , Perfilação da Expressão Gênica/classificação , Fígado/efeitos dos fármacos , Fígado/metabolismo , Fígado/patologia , Masculino , Análise de Sequência com Séries de Oligonucleotídeos , Reconhecimento Automatizado de Padrão , Proliferadores de Peroxissomos/química , Fenobarbital/química , Pirimidinas/química , Pirimidinas/toxicidade , RNA Mensageiro/análise , Ratos , Ratos Sprague-Dawley , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA