Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
J Mater Sci Mater Med ; 29(7): 94, 2018 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-29938325

RESUMO

The disadvantage of current biodegradable metals such as Mg and Fe is the release of hydrogen gas in vivo that can cause gas embolism and the production of voluminous iron oxide that can cause inflammation, respectively. Such considerations have turned focus towards Zn as an alternative. This is based on the fact that Zn plays a crucial role in many physiological processes, as well as potentially being biocompatible and capable of with biodegradation. As such, the purpose of the present study was to evaluate the in vivo performance of pure Zinc and Zn-2%Fe implants. The use of iron as an alloying element was aimed at accelerating the corrosion rate of pure zinc by a micro-galvanic effect so as to maintain the post-implantation biodegradation characteristics of the implant. In vivo assessment was carried out using cylindrical disks implanted in the back midline of 16 male Wistar rats for up to 24 weeks. Post-implantation evaluation included monitoring the well-being of rats, weekly examination of hematological parameters: serum Zn levels, red and white blood cell counts and hemoglobin levels, X-ray radiography, histological analysis and corrosion rate assessment. The results obtained in terms of well-being, hematological tests and histological analysis of the rats indicate that the in vivo behavior of pure Zn and Zn-2%Fe implants was adequate and in line with the results obtained by the control group containing inert Ti-6Al-4V alloy implants. The corrosion rate of Zn-2%Fe alloy in in vivo conditions was relatively increased compared to pure Zn due to micro-galvanic corrosion.


Assuntos
Implantes Absorvíveis , Ferro , Zinco , Implantes Absorvíveis/efeitos adversos , Ligas/química , Animais , Materiais Biocompatíveis/efeitos adversos , Materiais Biocompatíveis/química , Corrosão , Ferro/química , Masculino , Teste de Materiais , Ratos , Ratos Wistar , Titânio/química , Zinco/sangue , Zinco/química
2.
J Mater Sci Mater Med ; 28(11): 174, 2017 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-28956207

RESUMO

Increasing interest in biodegradable metals (Mg, Fe, and Zn) as structural materials for orthopedic and cardiovascular applications mainly relates to their promising biocompatibility, mechanical properties and ability to self-remove. However, Mg alloys suffer from excessive corrosion rates associated with premature loss of mechanical integrity and gas embolism risks. Fe based alloys produce voluminous corrosion products that have a detrimental effect on neighboring cells and extracellular matrix. In contrast, Zn does not appear to exhibit a harmful mode of corrosion. Unfortunately, pure zinc possesses insufficient mechanical strength for biomedical structural applications. The present study aimed at examining the potential of two new zinc based alloys, Zn-1%Mg and Zn-1%Mg-0.5%Ca to serve as structural materials for biodegradable implants. This examination was carried out under in vitro conditions, including immersion testing, potentiodynamic polarization analysis, electrochemical impedance spectroscopy (EIS), and stress corrosion cracking (SCC) assessments in terms of slow strain rate testing (SSRT). In order to assess the cytotoxicity of the tested alloys, cell viability was evaluated indirectly using Saos-2 cells. The results demonstrate that both zinc alloys can be considered as potential candidates for biodegradable implants, with a relative advantage to the Zn-1%Mg alloy in terms of its corrosion resistance and SCC performance.


Assuntos
Implantes Absorvíveis , Ligas/química , Materiais Biocompatíveis/química , Cálcio/química , Magnésio/química , Zinco/química , Ligas/farmacologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Corrosão , Humanos , Teste de Materiais , Espectrometria por Raios X , Difração de Raios X
3.
Materials (Basel) ; 16(6)2023 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-36984333

RESUMO

Additive manufacturing (AM) technologies have gained considerable attention in recent years as an innovative method to produce high entropy alloy (HEA) components. The unique and excellent mechanical and environmental properties of HEAs can be used in various demanding applications, such as the aerospace and automotive industries. This review paper aims to inspect the status and prospects of research and development related to the production of HEAs by AM technologies. Several AM processes can be used to fabricate HEA components, mainly powder bed fusion (PBF), direct energy deposition (DED), material extrusion (ME), and binder jetting (BJ). PBF technologies, such as selective laser melting (SLM) and electron beam melting (EBM), have been widely used to produce HEA components with good dimensional accuracy and surface finish. DED techniques, such as blown powder deposition (BPD) and wire arc AM (WAAM), that have high deposition rates can be used to produce large, custom-made parts with relatively reduced surface finish quality. BJ and ME techniques can be used to produce green bodies that require subsequent sintering to obtain adequate density. The use of AM to produce HEA components provides the ability to make complex shapes and create composite materials with reinforced particles. However, the microstructure and mechanical properties of AM-produced HEAs can be significantly affected by the processing parameters and post-processing heat treatment, but overall, AM technology appears to be a promising approach for producing advanced HEA components with unique properties. This paper reviews the various technologies and associated aspects of AM for HEAs. The concluding remarks highlight the critical effect of the printing parameters in relation to the complex synthesis mechanism of HEA elements that is required to obtain adequate properties. In addition, the importance of using feedstock material in the form of mix elemental powder or wires rather than pre-alloyed substance is also emphasized in order that HEA components can be produced by AM processes at an affordable cost.

4.
Pharmaceutics ; 15(11)2023 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-38004574

RESUMO

Peripheral nerve damage that results in lost segments requires surgery, but currently available hollow scaffolds have limitations that could be overcome by adding internal guidance support. A novel solution is to use filaments of absorbable metals to supply physical support and guidance for nerve regeneration that then safely disappear from the body. Previously, we showed that thin filaments of magnesium metal (Mg) would support nerve regeneration. Here, we tested another absorbable metal, zinc (Zn), using a proprietary zinc alloy with 2% iron (Zn-2%Fe) that was designed to overcome the limitations of both Mg and pure Zn metal. Non-critical-sized gaps in adult rat sciatic nerves were repaired with silicone conduits plus single filaments of Zn-2%Fe, Mg, or no metal, with autografts as controls. After seventeen weeks, all groups showed equal recovery of function and axonal density at the distal end of the conduit. The Zn alloy group showed some improvements in early rat health and recovery of function. The alloy had a greater local accumulation of degradation products and inflammatory cells than Mg; however, both metals had an equally thin capsule (no difference in tissue irritation) and no toxicity or inflammation in neighboring nerve tissues. Therefore, Zn-2%Fe, like Mg, is biocompatible and has great potential for use in nervous tissue regeneration and repair.

5.
Materials (Basel) ; 15(16)2022 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-36013615

RESUMO

A direct energy deposition (DED) process using wires is considered an additive manufacturing technology that can produce large components at an affordable cost. However, the high deposition rate of the DED process is usually accompanied by poor surface quality and inherent printing defects. These imperfections can have a detrimental effect on fatigue endurance and corrosion fatigue resistance. The aim of this study was to evaluate the critical effect of phase transition and printing defects on the corrosion fatigue behavior of 316L stainless steel produced by a wire laser additive manufacturing (WLAM) process. For comparison, a standard AISI 316L stainless steel with a regular austenitic microstructure was studied as a counterpart alloy. The structural assessment of printing defects was performed using a three-dimensional non-destructive method in the form of X-ray microtomography (CT) analysis. The microstructure was evaluated by optical and scanning electron microscopy, while general electrochemical characteristics and corrosion performance were assessed by cyclic potentiodynamic polarization (CCP) analysis and immersion tests. The fatigue endurance in air and in a simulated corrosive environment was examined using a rotating fatigue setup. The obtained results clearly demonstrate the inferior corrosion fatigue endurance of the 316L alloy produced by the WLAM process compared to its AISI counterpart alloy. This was mainly related to the drawbacks of WLAM alloys in terms of having a duplex microstructure (austenitic matrix and secondary delta-ferrite phase), reduced passivity, and a significantly increased amount of intralayer porosity that acts as a stress intensifier of fatigue cracking.

6.
Materials (Basel) ; 15(12)2022 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-35744102

RESUMO

The growing interest in refractory high-entropy alloys (HEAs) in the last decade is mainly due to their thermal stability, outstanding mechanical properties, and excellent corrosion resistance. However, currently HEAs are still not considered for use as common structural materials due to their inherent drawbacks in terms of processing and machining operations. The recent progress witnessed in additive manufacturing (AM) technologies has raised the option of producing complex components made of HEAs with minimal machining processes. So far, this could be achieved by using pre-alloyed powders of HEAs that were mainly produced by a conventional arc melting furnace (AMF) in the form of small compounds that were transformed into powder via a gas atomization process. To significantly reduce the production cost, the present study aims to analyze the ability to synthesize HEA WTaMoNbV via a laser powder bed fusion (LPBF) process using mixed elemental alloying powder as the raw material. For comparison, a counterpart alloy with the same chemical composition was analyzed and produced by an AMF process. The microstructures of the tested alloys were examined by scanning electron microscopy (SEM), transmission electron microscopy (TEM) and X-ray diffraction (XRD) analyses. The physical properties were evaluated in terms of density and mechanical strength, while the electrochemical behavior was assessed by potentiodynamic polarization analysis. The results disclosed similarities in microstructure, physical properties and electrochemical behavior between HEA WTaMoNbV manufactured by the proposed LPBF process and its counterpart alloy produced by an AMF process.

7.
Materials (Basel) ; 14(16)2021 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-34443204

RESUMO

The term "osseointegrated implants" mainly relates to structural systems that contain open spaces, which enable osteoblasts and connecting tissue to migrate during natural bone growth. Consequently, the coherency and bonding strength between the implant and natural bone can be significantly increased, for example in operations related to dental and orthopedic applications. The present study aims to evaluate the prospects of a Ti-6Al-4V lattice, produced by selective laser melting (SLM) and infiltrated with biodegradable Zn2%Fe alloy, as an OI-TiZn system implant in in vitro conditions. This combined material structure is designated by this study as an osseointegrated implant (OI-TiZn) system. The microstructure of the tested alloys was examined both optically and using scanning electron microscopy (SEM) and X-ray diffraction (XRD) analysis. The mechanical properties were assessed in terms of compression strength, as is commonly acceptable in cases of lattice-based structures. The corrosion performance was evaluated by immersion tests and electrochemical analysis in terms of potentiodynamic polarization and electrochemical impedance spectroscopy (EIS), all in simulated physiological environments in the form of phosphate buffered saline (PBS) solution. The cytotoxicity was evaluated in terms of indirect cell viability. The results obtained demonstrate the adequate performance of the OI-TiZn system as a non-cytotoxic structural material that can maintain its mechanical integrity under compression, while presenting acceptable corrosion rate degradation.

8.
Mater Sci Eng C Mater Biol Appl ; 129: 112418, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34579927

RESUMO

We have developed a novel bioactive hybrid metallic implant that integrates the beneficial characteristics of a permanent matrix and a biodegradable substance. Such a combination may generate a material system that evolves into a porous structure within weeks to months following implantation and can be used to form strong interfacial bonding and osseointegration for orthopedic and dental applications. Presently, traditional technologies such as casting, powder metallurgy and plastic forming have limited ability to produce the complex bioactive implant structures that are required in practical applications. The present study aimed to develop an innovative bioactive TiMg (BTiMg) hybrid system using a Ti-lattice (Ti-6Al-4 V) produced by an additive manufacturing (AM) process, in combination with a new Mg-based alloy (Mg-2.4%Nd -0.6%Y -0.3%Zr) as a biodegradable filling material. We evaluated the in-vitro behavior of the BTiMg system in a simulated physiological environment, along with cytotoxicity assessment. The microstructure was evaluated by scanning electron microscopy and X-ray diffraction, mechanical properties were examined in terms of compressive strength, environmental performance analysis was conducted by electrochemical testing using potentiodynamic polarization and impedance spectroscopy (EIS), and cytotoxicity characteristics were assessed by indirect cell viability analysis. The results demonstrated the feasibility to produce geometrically complex implants by AM technology, as well as the strength and non-cytotoxic effects of the BTiMg system. Benefits included a relatively high ultimate compressive strength (UCS) and a high yield point (YP), along with an adequate cell viability response in the range between 70 and 120%.


Assuntos
Ligas , Titânio , Osseointegração , Porosidade , Próteses e Implantes
9.
Materials (Basel) ; 14(1)2020 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-33374460

RESUMO

The present study aims to evaluate the stress corrosion behavior of additively manufactured austenitic stainless steel produced by the wire arc additive manufacturing (WAAM) process. This was examined in comparison with its counterpart, wrought alloy, by electrochemical analysis in terms of potentiodynamic polarization and impedance spectroscopy and by slow strain rate testing (SSRT) in a corrosive environment. The microstructure assessment was performed using optical and scanning electron microscopy along with X-ray diffraction analysis. The obtained results indicated that in spite of the inherent differences in microstructure and mechanical properties between the additively manufactured austenitic stainless steel and its counterpart wrought alloy, their electrochemical performance and stress corrosion susceptibility were similar. The corrosion attack in the additively manufactured alloy was mainly concentrated at the interface between the austenitic matrix and the secondary ferritic phase. In the case of the counterpart wrought alloy with a single austenitic phase, the corrosion attack was manifested by uniform pitting evenly scattered at the external surface. Both alloys showed ductile failure in the form of "cap and cone" fractures in post-SSRT experiments in corrosive environment.

10.
Ann Biomed Eng ; 47(6): 1400-1408, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30850910

RESUMO

The efforts to develop structural materials for biodegradable metal implants have lately shifted their focus from Magnesium and Iron base alloys towards Zinc. This was mainly due to the accelerated corrosion rate of Mg that is accompanied by hydrogen gas evolution, formation of voluminous iron oxide products with reduced degradation rate in the case of Iron implants and the crucial role of Zn in many physiological processes. However the mechanical properties and degradation capabilities of pure zinc in physiological environment are limited and do not comply with the requirements of biodegradable implants. The present study aims at evaluating the effect of 4%Fe on the in-vitro and in-vivo behavior of pure Zinc. This was carried out in order to address the inherent disadvantages of pure zinc in terms of mechanical properties and biodegradability. The results obtained clearly indicate that the biocompatibility and mechanical properties of the new material system was in accord with the prospective requirements of biodegradable implants. However the corrosion degradation of the new alloy in in-vivo conditions was quite similar to that of pure zinc in spite of the significant micro-galvanic effect created by Delta phase Zn11Fe.


Assuntos
Implantes Absorvíveis , Ligas , Ferro , Zinco , Animais , Materiais Biocompatíveis , Corrosão , Masculino , Ratos Wistar
11.
Mater Sci Eng C Mater Biol Appl ; 62: 752-61, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26952481

RESUMO

Porous Mg scaffolds are considered as potential bone growth promoting materials. Unfortunately, the high rate of biocorrosion inherent to Mg alloys may cause a premature loss of mechanical strength, excessive evolution of hydrogen gas, and a rapidly shifting surface topography, all of which may hinder the ability of native cells to attach and grow on the implant surface. Here we investigated the cell cytotoxicity effects during corrosion of a novel magnesium alloy, EW10X04 (Mg-1.2%Nd-0.5%Y-0.5%Zr-0.4%Ca), following diffusion coating (DC) and heat treatment to reduce the corrosion rate. Cells were exposed either to corrosion products or to the corroding scaffold surface, in vitro. The microstructure characterization of the scaffold surface was carried out by scanning electron microscopy (SEM) equipped with a Noran energy dispersive spectrometer (EDS). Phase analyses were obtained by X-ray diffraction (XRD). We found that cell viability, growth, and adhesion were all improved when cultured on the EW10X04+DC surface or under corrosion product extracts due to lower corrosion rates relative to the EW10X04 control samples. It is therefore believed that the tested alloy after Nd coating and heat treatment may introduce a good balance between its biodegradation characteristics and cytotoxic effects towards cells.


Assuntos
Ligas/química , Magnésio/química , Neodímio/química , Ligas/metabolismo , Ligas/toxicidade , Animais , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Corrosão , Difusão , Temperatura Alta , Camundongos , Microscopia Eletrônica de Varredura , Microscopia de Fluorescência , Espectrometria por Raios X , Propriedades de Superfície , Titânio/química , Titânio/toxicidade , Difração de Raios X
12.
ACS Biomater Sci Eng ; 2(12): 2355-2364, 2016 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-33465884

RESUMO

There has been considerable recent interest to develop a feasible bioresorbable stent (BRS) metal. Although zinc and its alloys have many potential advantages, the inflammatory response has not been carefully examined. Using a modified wire implantation model, we characterize the inflammatory response elicited by zinc at high purity (4N) [99.99%], special high grade (SHG)[∼99.7%], and alloyed with 1 wt % (Zn-1Al), 3% (Zn-3Al), and 5.5% (Zn-5Al) aluminum. We found that inflammatory cells were able to penetrate the thick and porous corrosion layer that quickly formed around SHG, Zn-1Al, Zn-3Al, and Zn-5Al implants. In contrast, a delayed entrance of inflammatory cells into the corrosion layer around 4N zinc due to a significantly lower corrosion rate was associated with greater fibrous encapsulation, appearance of necrotic regions, and increased macrophage labeling. Interestingly, cell viability at the interface decreased from SHG, to Zn-1Al, and then Zn-3Al, a trend associated with an increased CD68 and CD11b labeling and capsule thickness. Potentially, the shift to intergranular corrosion due to the aluminum addition increased the activity of macrophages. We conclude that the ability of macrophages to penetrate and remain viable within the corrosion layer may be of fundamental importance for eliciting biocompatible inflammatory responses around corrodible metals.

13.
Acta Biomater ; 9(10): 8624-30, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23321300

RESUMO

The effect of diffusion coating of Nd on the corrosion performance of Mg-1.2%Nd-0.5%Y-0.5%Zr-0.4%Ca alloy (EW10X04) used as a new structural material for biodegradable implants was evaluated in a simulated physiological electrolyte. The initial Nd layer with a thickness of 1 µm was obtained by a physical vapor deposition process in an electron gun evaporator. This was followed by a diffusion coating process carried out at high temperature in a protective atmosphere. The microstructure of the diffusion coating system was examined using scanning electron microscopy, X-ray diffraction and X-ray photoelectron spectroscopy analysis. The corrosion resistance was evaluated by potentiodynamic polarization and electrochemical impedance spectroscopy in a simulated physiological electrolyte in the form of 0.9% NaCl solution saturated with Mg(OH)2. The results of the corrosion tests clearly demonstrated that the corrosion resistance of the alloy with the diffusion coating layer was significantly improved compared to the base alloy. This was mainly due to the relatively continuous network of the secondary passive phase Mg41Nd5 that acts as an effective corrosion barrier and the beneficial effect of enriching the oxide film with Nd and Nd oxides such as Nd2O3 and Nd6O11.


Assuntos
Implantes Absorvíveis , Materiais Revestidos Biocompatíveis/farmacologia , Eletrólitos/farmacologia , Magnésio/farmacologia , Neodímio/farmacologia , Corrosão , Difusão , Técnicas Eletroquímicas , Microscopia Eletrônica de Varredura , Espectroscopia Fotoeletrônica , Difração de Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA