Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
Nucleic Acids Res ; 50(4): 1815-1828, 2022 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-35137169

RESUMO

Although the mode of action of the ribosomes, the multi-component universal effective protein-synthesis organelles, has been thoroughly explored, their mere appearance remained elusive. Our earlier comparative structural studies suggested that a universal internal small RNA pocket-like segment called by us the protoribosome, which is still embedded in the contemporary ribosome, is a vestige of the primordial ribosome. Herein, after constructing such pockets, we show using the "fragment reaction" and its analyses by MALDI-TOF and LC-MS mass spectrometry techniques, that several protoribosome constructs are indeed capable of mediating peptide-bond formation. These findings present strong evidence supporting our hypothesis on origin of life and on ribosome's construction, thus suggesting that the protoribosome may be the missing link between the RNA dominated world and the contemporary nucleic acids/proteins life.


Assuntos
Origem da Vida , Proteínas/metabolismo , RNA , Ribossomos , Peptídeos/metabolismo , Biossíntese de Proteínas , RNA/metabolismo , Ribossomos/metabolismo
2.
Int J Mol Sci ; 25(9)2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38732179

RESUMO

The evolution of the translation system is a fundamental issue in the quest for the origin of life. A feasible evolutionary scenario necessitates the autonomous emergence of a protoribosome capable of catalyzing the synthesis of the initial peptides. The peptidyl transferase center (PTC) region in the modern ribosomal large subunit is believed to retain a vestige of such a prebiotic non-coded protoribosome, which would have self-assembled from random RNA chains, catalyzed peptide bond formation between arbitrary amino acids, and produced short peptides. Recently, three research groups experimentally demonstrated that several distinct dimeric constructs of protoribosome analogues, derived predicated on the approximate 2-fold rotational symmetry inherent in the PTC region, possess the ability to spontaneously fold, dimerize, and catalyze the formation of peptide bonds and of short peptides. These dimers are examined, aiming at retrieving information concerned with the characteristics of a prebiotic protoribosome. The analysis suggests preconditions for the laboratory re-creation of credible protoribosome analogues, including the preference of a heterodimer protoribosome, contradicting the common belief in the precedence of homodimers. Additionally, it derives a dynamic process which possibly played a role in the spontaneous production of the first bio-catalyzed peptides in the prebiotic world.


Assuntos
Ribossomos , Ribossomos/metabolismo , Ribossomos/química , Peptídeos/química , Origem da Vida , Peptidil Transferases/metabolismo , Peptidil Transferases/química , Biossíntese de Proteínas
3.
Int J Mol Sci ; 23(24)2022 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-36555394

RESUMO

tRNA is a key component in life's most fundamental process, the translation of the instructions contained in mRNA into proteins. Its role had to be executed as soon as the earliest translation emerged, but the questions of the prebiotic tRNA materialization, aminoacylation, and the origin of the coding triplets it carries are still open. Here, these questions are addressed by utilizing a distinct pattern of coding triplets highly conserved in the acceptor stems from the modern bacterial tRNAs of five early-emerging amino acids. Self-assembly of several copies of a short RNA oligonucleotide that carries a related pattern of coding triplets, via a simple and statistically feasible process, is suggested to result in a proto-tRNA model highly compatible with the cloverleaf secondary structure of the modern tRNA. Furthermore, these stem coding triplets evoke the possibility that they were involved in self-aminoacylation of proto-tRNAs prior to the emergence of the earliest synthetases, a process proposed to underlie the formation of the genetic code. Being capable of autonomous materialization and of self-aminoacylation, this verifiable model of the proto-tRNA advent adds principal components to an initial set of molecules and processes that may have led, exclusively through natural means, to the emergence of life.


Assuntos
Aminoacil-tRNA Sintetases , RNA de Transferência , Aminoacilação , RNA de Transferência/metabolismo , Código Genético , RNA/metabolismo , Aminoácidos/metabolismo , Aminoacil-tRNA Sintetases/genética , Conformação de Ácido Nucleico , Evolução Molecular
4.
Int J Mol Sci ; 19(12)2018 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-30545154

RESUMO

The feasibility of self-assembly of a translation system from prebiotic random RNA chains is a question that is central to the ability to conceive life emerging by natural processes. The spontaneous materialization of a translation system would have required the autonomous formation of proto-transfer RNA (tRNA) and proto-ribosome molecules that are indispensable for translating an RNA chain into a polypeptide. Currently, the vestiges of a non-coded proto-ribosome, which could have only catalyzed the formation of a peptide bond between random amino acids, is consensually localized in the region encircling the peptidyl transferase center of the ribosomal large subunit. The work presented here suggests, based on high resolution structures of ribosomes complexed with messenger RNA (mRNA) and tRNAs, that three types of L-shaped RNA building blocks derived from the modern ribosome, alongside with an L-shaped proto-tRNA, each composed of about 70-mer, could have randomly occurred in the prebiotic world and combined to form a simple translation system. The model of the initial coded proto-ribosome, which includes the active sites of both ribosomal subunits, together with a bridging element, incorporates less than 6% of the current prokaryotic rRNA, yet it integrates all of the ribosomal components that are vital for synthesizing the earliest coded polypeptides.


Assuntos
Modelos Biológicos , Conformação de Ácido Nucleico , Origem da Vida , Biossíntese de Proteínas , RNA/química , Sequência de Bases , Evolução Molecular , Modelos Moleculares , RNA Mensageiro/metabolismo , RNA de Transferência/química , Ribossomos/metabolismo
5.
Molecules ; 21(12)2016 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-27941673

RESUMO

An indispensable prerequisite for establishing a scenario of life emerging by natural processes is the requirement that the first simple proto-molecules could have had a realistic probability of self-assembly from random molecular polymers in the prebiotic world. The vestige of the proto-ribosome, which is believed to be still embedded in the contemporary ribosome, is used to assess the feasibility of such spontaneous emergence. Three concentric structural elements of different magnitudes, having a dimeric nature derived from the symmetrical region of the ribosomal large subunit, were suggested to constitute the vestige of the proto-ribosome. It is assumed to have materialized spontaneously in the prebiotic world, catalyzing non-coded peptide bond formation and simple elongation. Probabilistic and energetic considerations are applied in order to evaluate the suitability of the three contenders for being the initial proto-ribosome. The analysis points to the simplest proto-ribosome, comprised of a dimer of tRNA-like molecules presently embedded in the core of the symmetrical region, as the only one having a realistic statistical likelihood of spontaneous emergence from random RNA chains. Hence it offers a feasible starting point for a continuous evolutionary path from the prebiotic matter, through natural processes, into the intricate modern translation system.


Assuntos
Evolução Molecular , Origem da Vida , Elongação Traducional da Cadeia Peptídica , Ribossomos/química
6.
Life (Basel) ; 14(2)2024 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-38398786

RESUMO

To track down the possible roots of life, various models for the initial living system composed of different combinations of the three extant biopolymers, RNA, DNA, and proteins, are presented. The suitability of each molecular set is assessed according to its ability to emerge autonomously, sustain, and evolve continuously towards life as we know it. The analysis incorporates current biological knowledge gained from high-resolution structural data and large sequence datasets, together with experimental results concerned with RNA replication and with the activity demonstrated by standalone constructs of the ribosomal Peptidyl Transferase Center region. The scrutiny excludes the DNA-protein combination and assigns negligible likelihood to the existence of an RNA-DNA world, as well as to an RNA world that contained a replicase made of RNA. It points to the precedence of an RNA-protein system, whose model of emergence suggests specific processes whereby a coded proto-ribosome ribozyme, specifically aminoacylated proto-tRNAs and a proto-polymerase enzyme, could have autonomously emerged, cross-catalyzing the formation of each other. This molecular set constitutes a feasible starting point for a continuous evolutionary path, proceeding via natural processes from the inanimate matter towards life as we know it.

7.
FASEB J ; 26(6): 2277-82, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22389440

RESUMO

The ribosome is a molecular machine whose manner of controlling the progression of the nascent chain through the ribosomal exit tunnel is currently unknown. A novel model for the mechanism driving the nascent chain motion is hereby presented, in which the ∼180° rotatory motion performed by each C-terminal amino acid of the nascent chain during its translocation from the A site to the P site, is suggested to twist the newly formed peptide bond into cis conformation. By catalyzing the cis to trans isomerization, the ribosome is proposed to release the potential energy stored within the cis conformer and to utilize it to push the chain down the tunnel, thus operating as a molecular motor. This hypothetical isomerization mechanism is supported by its ability to provide an explanation for the peculiar conduct observed in translational events of nascent chains with C-terminal prolines: the slow peptide bond formation with puromycin, translation arrest, and tmRNA tagging.


Assuntos
Peptídeos/química , Ribossomos/metabolismo , Modelos Biológicos , Proteínas Motores Moleculares , Biossíntese Peptídica/fisiologia , Peptidil Transferases/metabolismo , Estereoisomerismo
8.
FEBS Lett ; 595(7): 913-924, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33460451

RESUMO

The mechanism and evolution of the recognition scheme between key components of the translation system, that is, tRNAs, synthetases, and elongation factors, are fundamental issues in understanding the translation of genetic information into proteins. Statistical analysis of bacterial tRNA sequences reveals that for six amino acids, a string of 10 nucleotides preceding the tRNA 3' end carries cognate coding triplets to nearly full extent. The triplets conserved in positions 63-67 are implicated in the recognition by the elongation factor EF-Tu, and those conserved in positions 68-72, in the identification of cognate tRNAs, and their derived minihelices by class IIa synthetases. These coding triplets are suggested to have primordial origin, being engaged in aminoacylation of prebiotic tRNAs and in the establishment of the canonical codon set.


Assuntos
Aminoacil-tRNA Sintetases/genética , Evolução Molecular , Fator Tu de Elongação de Peptídeos/genética , RNA de Transferência/genética , Aminoácidos/genética , Aminoacil-tRNA Sintetases/ultraestrutura , Aminoacilação/genética , Códon/genética , Escherichia coli/genética , Código Genético/genética , Conformação de Ácido Nucleico , Fator Tu de Elongação de Peptídeos/ultraestrutura , RNA de Transferência/ultraestrutura
9.
Int J Mol Sci ; 10(7): 2921-2934, 2009 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-19742176

RESUMO

A symmetric pocket-like entity, composed of two L-shaped RNA units, encircles the peptide synthesis site within the contemporary ribosome. This entity was suggested to be the vestige of a dimeric proto-ribosome, which could have formed spontaneously in the prebiotic world, catalyzing non-coded peptide bond formation and elongation. This structural element, beyond offering the initial step in the evolution of translation, is hypothesized here to be linked to the origin of life. By catalyzing the production of random peptide chains, the proto-ribosome could have enabled the formation of primary enzymes, launching a process of co-evolution of the translation apparatus and the proteins, thus presenting an alternative to the RNA world hypothesis.


Assuntos
Origem da Vida , RNA Ribossômico/química , Ribossomos/química , Evolução Molecular , Conformação de Ácido Nucleico , Ribossomos/genética
10.
FEBS Lett ; 591(20): 3252-3258, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28786485

RESUMO

A feasible scenario for the emergence of life requires the spontaneous materialization and sustainability of a proto-ribosome that could have catalysed the formation of the first peptides. Models of proto-ribosomes were derived from the ribosomal Peptidyl Transferase Centre (PTC) region, but the poor prebiotic copying abilities give rise to the question of their mode of replication. Here, complementarity is demonstrated in bacterial ribosomes, between nucleotides that constitute the two halves of the PTC cavity. The complementarity corroborates the dimeric nature of the proto-ribosome and is likely to underlie the symmetry of the PTC region. Furthermore, it indicates a simple and efficient replication mode; the strand of each monomer could have acted as a template for the synthesis of its counterpart, forming a self-replicating ribozyme.


Assuntos
Origem da Vida , Peptidil Transferases/química , RNA Catalítico/química , RNA Ribossômico 23S/química , Ribossomos/metabolismo , Pareamento de Bases , Biocatálise , Escherichia coli/genética , Escherichia coli/metabolismo , Evolução Molecular , Modelos Biológicos , Modelos Moleculares , Conformação de Ácido Nucleico , Peptidil Transferases/genética , Peptidil Transferases/metabolismo , RNA Catalítico/genética , RNA Catalítico/metabolismo , RNA Ribossômico 23S/genética , RNA Ribossômico 23S/metabolismo , Ribossomos/genética , Ribossomos/ultraestrutura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA