Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 81
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Syst Biol ; 72(4): 964-971, 2023 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-37161751

RESUMO

Higher-level classifications often must account for monotypic taxa representing depauperate evolutionary lineages and lacking synapomorphies of their better-known, well-defined sister clades. In a ranked (Linnean) or unranked (phylogenetic) classification system, discovering such a depauperate taxon does not necessarily invalidate the rank classification of sister clades. Named higher taxa must be monophyletic to be phylogenetically valid. Ranked taxa above the species level should also maximize information content, diagnosability, and utility (e.g., in biodiversity conservation). In spider classification, families are the highest rank that is systematically catalogued, and incertae sedis is not allowed. Consequently, it is important that family-level taxa be well defined and informative. We revisit the classification problem of Orbipurae, an unranked suprafamilial clade containing the spider families Nephilidae, Phonognathidae, and Araneidae sensu stricto. We argue that, to maximize diagnosability, information content, conservation utility, and practical taxonomic considerations, this "splitting" scheme is superior to its recently proposed alternative, which lumps these families together as Araneidae sensu lato. We propose to redefine Araneidae and recognize a monogeneric spider family, Paraplectanoididae fam. nov. to accommodate the depauperate lineage Paraplectanoides. We present new subgenomic data to stabilize Orbipurae topology which also supports our proposed family-level classification. Our example from spiders demonstrates why classifications must be able to accommodate depauperate evolutionary lineages, for example, Paraplectanoides. Finally, although clade age should not be a criterion to determine rank, other things being equal, comparable ages of similarly ranked taxa do benefit comparative biology. [Classification, family rank, phylogenomics, systematics, monophyly, spider phylogeny.].


Assuntos
Evolução Biológica , Aranhas , Animais , Filogenia , Aranhas/genética
2.
Syst Biol ; 69(6): 1122-1136, 2020 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-32170955

RESUMO

Vicariance and dispersal events, combined with intricate global climatic history, have left an imprint on the spatiotemporal distribution and diversity of many organisms. Anelosimus cobweb spiders (Theridiidae), are organisms ranging in behavior from solitary to highly social, with a cosmopolitan distribution in temperate to tropical areas. Their evolutionary history and the discontinuous distribution of species richness suggest that 1) long-distance overwater dispersal and 2) climate change during the Neogene (23-2.6 Ma), may be major factors in explaining their distribution and diversification. Here, we test these hypotheses, and explicitly test if global Miocene/Pliocene climatic cooling in the last 8 Ma affected Anelosimus radiation in parallel in South America and Madagascar. To do so, we investigate the phylogeny and spatiotemporal biogeography of Anelosimus through a culmination of a 20-year comprehensive global sampling at the species level (69 species, including 84% of the known 75 species worldwide, represented by 268 individuals) using nucleotide data from seven loci (5.5 kb). Our results strongly support the monophyly of Anelosimus with an Oligocene ($\sim $30 Ma) South American origin. Major clades on other continents originate via multiple, long-distance dispersal events, of solitary or subsocial-but not social-lineages, from the Americas. These intercontinental dispersals were to Africa, Madagascar (twice), and SE Asia/Australasia. The early diversification of Anelosimus spiders coincides with a sudden thermal increase in the late Oligocene ($\sim $27-25 Ma), though no causal connection can be made. Our results, however, strongly support the hypothesis that global Neogene climatic cooling in the last 8 Ma drove Anelosimus radiation in parallel in South America and Madagascar, offering a rare empirical evidence for diversification of a socially diverse group driven by an interplay between long-distance dispersal and global Neogene climatic changes. [Cobweb spiders; diversification; global biogeography; long-distance dispersal; molecular phylogenetics; neogene climate changes; sociality; vicariance.].


Assuntos
Distribuição Animal/fisiologia , Biodiversidade , Filogenia , Aranhas/classificação , Aranhas/fisiologia , Animais , Mudança Climática
3.
Syst Biol ; 68(4): 555-572, 2019 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-30517732

RESUMO

Instances of sexual size dimorphism (SSD) provide the context for rigorous tests of biological rules of size evolution, such as Cope's rule (phyletic size increase), Rensch's rule (allometric patterns of male and female size), as well as male and female body size optima. In certain spider groups, such as the golden orbweavers (Nephilidae), extreme female-biased SSD (eSSD, female:male body length $\ge$2) is the norm. Nephilid genera construct webs of exaggerated proportions, which can be aerial, arboricolous, or intermediate (hybrid). First, we established the backbone phylogeny of Nephilidae using 367 anchored hybrid enrichment markers, then combined these data with classical markers for a reference species-level phylogeny. Second, we used the phylogeny to test Cope and Rensch's rules, sex specific size optima, and the coevolution of web size, type, and features with female and male body size and their ratio, SSD. Male, but not female, size increases significantly over time, and refutes Cope's rule. Allometric analyses reject the converse, Rensch's rule. Male and female body sizes are uncorrelated. Female size evolution is random, but males evolve toward an optimum size (3.2-4.9 mm). Overall, female body size correlates positively with absolute web size. However, intermediate sized females build the largest webs (of the hybrid type), giant female Nephila and Trichonephila build smaller webs (of the aerial type), and the smallest females build the smallest webs (of the arboricolous type). We propose taxonomic changes based on the criteria of clade age, monophyly and exclusivity, classification information content, and diagnosability. Spider families, as currently defined, tend to be between 37 million years old and 98 million years old, and Nephilidae is estimated at 133 Ma (97-146), thus deserving family status. We, therefore, resurrect the family Nephilidae Simon 1894 that contains Clitaetra Simon 1889, the Cretaceous GeratonephilaPoinar and Buckley (2012), Herennia Thorell 1877, IndoetraKuntner 2006, new rank, Nephila Leach 1815, Nephilengys L. Koch 1872, Nephilingis Kuntner 2013, Palaeonephila Wunderlich 2004 from Tertiary Baltic amber, and TrichonephilaDahl 1911, new rank. We propose the new clade Orbipurae to contain Araneidae Clerck 1757, Phonognathidae Simon 1894, new rank, and Nephilidae. Nephilid female gigantism is a phylogenetically ancient phenotype (over 100 Ma), as is eSSD, though their magnitudes vary by lineage.


Assuntos
Tamanho Corporal/genética , Filogenia , Caracteres Sexuais , Aranhas/classificação , Animais , Feminino , Masculino , Aranhas/anatomia & histologia , Aranhas/genética
4.
Cladistics ; 36(1): 1-21, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34618955

RESUMO

We present a new phylogeny of the spider family Araneidae based on five genes (28S, 18S, COI, H3 and 16S) for 158 taxa, identified and mainly sequenced by us. This includes 25 outgroups and 133 araneid ingroups representing the subfamilies Zygiellinae Simon, 1929, Nephilinae Simon, 1894, and the typical araneids, here informally named the "ARA Clade". The araneid genera analysed here include roughly 90% of all currently named araneid species. The ARA Clade is the primary focus of this analysis. In taxonomic terms, outgroups comprise 22 genera and 11 families, and the ingroup comprises three Zygiellinae and four Nephilinae genera, and 85 ARA Clade genera (ten new). Within the ARA Clade, we recognize ten informal groups that contain at least three genera each and are supported under Bayesian posterior probabilities (≥ 0.95): "Caerostrines" (Caerostris, Gnolus and Testudinaria), "Micrathenines" (Acacesia, Micrathena, Ocrepeira, Scoloderus and Verrucosa), "Eriophorines" (Acanthepeira, Alpaida, Eriophora, Parawixia and Wagneriana), "Backobourkiines" (Acroaspis, Backobourkia, Carepalxis, Novakiella, Parawixia, Plebs, Singa and three new genera), "Argiopines" (Arachnura, Acusilas, Argiope, Cyrtophora, Gea, Lariniaria and Mecynogea), "Cyrtarachnines" (Aranoethra, Cyrtarachne, Paraplectana, Pasilobus and Poecilopachys), "Mastophorines" (Celaenia, Exechocentrus and Mastophora,), "Nuctenines" (Larinia, Larinioides and Nuctenea), "Zealaraneines" (Colaranea, Cryptaranea, Paralarinia, Zealaranea and two new genera) and "Gasteracanthines" (Augusta, Acrosomoides, Austracantha, Gasteracantha, Isoxya, Macracantha, Madacantha, Parmatergus and Thelacantha). Few of these groups are currently corroborated by morphology, behaviour, natural history or biogeography. We also include the large genus Araneus, along with Aculepeira, Agalenatea, Anepsion, Araniella, Cercidia, Chorizopes, Cyclosa, Dolophones, Eriovixia, Eustala, Gibbaranea, Hingstepeira, Hypognatha, Kaira, Larinia, Mangora, Metazygia, Metepeira, Neoscona, Paraplectanoides, Perilla, Poltys, Pycnacantha, Spilasma and Telaprocera, but the placement of these genera was generally ambiguous, except for Paraplectanoides, which is strongly supported as sister to traditional Nephilinae. Araneus, Argiope, Eriophora and Larinia are polyphyletic, Araneus implying nine new taxa of genus rank, and Eriophora and Larinia two each. In Araneus and Eriophora, polyphyly was usually due to north temperate generic concepts being used as dumping grounds for species from southern hemisphere regions, e.g. South-East Asia, Australia or New Zealand. Although Araneidae is one of the better studied spider families, too little natural history and/or morphological data are available across these terminals to draw any strong evolutionary conclusions. However, the classical orb web is reconstructed as plesiomorphic for Araneidae, with a single loss in "cyrtarachnines"-"mastophorines". Web decorations (collectively known as stabilimenta) evolved perhaps five times. Sexual dimorphism generally results from female body size increase with few exceptions; dimorphic taxa are not monophyletic and revert to monomorphism in a few cases.

5.
Mol Phylogenet Evol ; 130: 259-268, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30326288

RESUMO

The origin of the Caribbean biota remains debated, but amassing evidence suggests important roles of both dispersal and vicariance events in the colonization the archipelago. The most prominent vicariance hypothesis is colonization over the GAARlandia land bridge that putatively connected the Greater Antilles to South America around 33 mya. This hypothesis has received support from studies of individual lineages, but its main prediction-the simultaneous colonization of multiple lineages during that time window-requires further unambiguous corroboration. Here, we examine the phylogenetic structure of huntsman spiders (Sparassidae) of the Caribbean. Huntsman spiders are appropriate models for this question, as they are expected to be dispersal limited as substrate and foliage dwelling spiders that rarely balloon, yet are found on some volcanic islands, and thus at least some overwater dispersal must have occurred. We focus on the Caribbean endemic Neostasina, but also include Caribbean Olios, for a deeper biogeographical understanding. We use two mitochondrial and four nuclear markers to reconstruct dated phylogenetic trees and to test taxonomic and biogeographic hypotheses. Our analyses strongly support the monophyly of Neostasina and the polyphyly of Olios, with a new clade endemic to the Caribbean. Both Neostasina and Caribbean Olios occur on the Greater and Lesser Antilles and independently colonized the Caribbean around 36-28 mya. Hypothesis testing in BioGeoBEARS suggests a role of the GAARlandia landbridge in the colonization of both clades. The 'Olios-like' clade, in contrast, is restricted to the southern Lesser Antilles and shows a biogeographic history consistent with colonization from S. America, probably within the last 10 my. Thus, many spider lineages on the Greater Antilles seem to have colonized the Caribbean during a relatively short time span approximately coinciding with the proposed timing of GAARlandia. The synchronous colonization of multiple lineages suggests a temporary land connection. However, the main problem in concluding synchronous events across lineages in this study, as in most others, is the ambiguity in chronogram analyses meaning that many different patterns can be 'consistent' with GAARlandia, thus potentially providing a false positive result. Broad comparative biogeographical studies such as the CarBio project will offer the best opportunity to multiply test shared biogeographic patterns among independent lineages. The current paper contributes evidence from multiple lineages that will contribute to this synthesis.


Assuntos
Modelos Teóricos , Aranhas/classificação , Animais , Sequência de Bases , Biodiversidade , Região do Caribe , Funções Verossimilhança , Filogenia , Filogeografia , América do Sul , Fatores de Tempo
6.
Mol Phylogenet Evol ; 107: 10-15, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27742474

RESUMO

The phylogenetic relationships among genera of the subfamily Vespinae (yellowjackets and hornets) remain unclear. Yellowjackets and hornets constitute one of the only two lineages of highly eusocial wasps, and the distribution of key behavioral traits correlates closely with the current classification of the group. The potential of the Vespinae to elucidate the evolution of social life, however, remains limited due to ambiguous genus-level relationships. Here, we address the relationships among genera within the Vespinae using transcriptomic (RNA-seq) data. We sequenced the transcriptomes of six vespid wasps, including three of the four genera recognized in the Vespinae, combined our data with publicly available transcriptomes, and assembled two matrices comprising 1,507 and 3,356 putative single-copy genes. The results of our phylogenomic analyses recover Dolichovespula as more closely related to Vespa than to Vespula, therefore challenging the prevailing hypothesis of yellowjacket (Vespula+Dolichovespula) monophyly. This suggests that traits such as large colony size and high paternity arose in the genus Vespula following its early divergence from the remaining vespine genera.


Assuntos
Vespas/classificação , Animais , Evolução Biológica , DNA Complementar/química , DNA Complementar/metabolismo , Filogenia , RNA/química , RNA/isolamento & purificação , RNA/metabolismo , Análise de Sequência de DNA , Transcriptoma , Vespas/genética
7.
Mol Phylogenet Evol ; 94(Pt B): 658-675, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26454029

RESUMO

Cobweb spiders (Theridiidae) are highly diverse from the perspective of species richness, morphological diversity, variety of web architecture, and behavioral repertoires. The family includes over 50% of social spiders, a behavioral rarity among the order, and members of the family are furthermore the subject of research on venom, silk biomechanics, kleptoparasitism and web building, among other traits. Theridiidae is one of the most abundant groups of spiders, and thus key insect predators in many different ecosystems and is among relatively few spider families that show high degree of myrmecophagy. Modern comparative studies on all these fronts are best buttressed on a phylogenetic foundation. Our goal here is to offer a revised, dated, phylogenetic hypothesis for the family by summarizing previously published data from multiple molecular and morphological studies through data-mining, and adding novel data from several genera. We also test the hypothesis that the origin and diversification of cobweb spiders coincides with that of ants on which many species specialize as prey. The new phylogeny is largely congruent with prior studies and current taxonomy and should provide a useful tool for theridiid classification and for comparative analyses. Nevertheless, we also highlight the limitations of currently available data-the state of the art in Theridiidae phylogenetics-offering weak support for most of the deeper nodes in the phylogeny. Thus the need is clear for modern phylogenomic approaches to obtain a more solid understanding, especially of relationships among subfamilies. We recover the monophyly of currently recognized theridiid subfamilies with the exception of some enigmatic 'pholcommatines' (Styposis, Phoroncidia) and putative 'hadrotarsines' (Audifia, Tekellina) whose placement is uncertain in our analyses. Theridiidae dates back some 100 mya to the Cretaceous, a period of diversification in flowering plants and many groups of insects, including ants. The origin of cobweb spiders, and hence the cobweb-a speciallized trap for pedestrian prey-coincides with a major diversification shift in ants. The family becomes abundant in fossil record 50-40 mya as ants also diversify and reach dominance and contemporary patterns of abundances of theridiids and ants show the same trends, with increasing relative abundance towards the equator and at lower altitudes. We find that among orbiculariae, lineages that specialize on ant prey are non-randomly clustered within Theridiidae. Given these findings we hypothesize that the origin of the gumfoot web was a stepping stone that facilitated the capture of ants and resulted in specialized myrmecophagy in a number of 'basal' theridiids. We also document a subsequent loss in myrmecophagy, and associated increase in speciation rates, as 'recent' theridiid groups evolve diverse web forms and many return to the capture of aerial prey.


Assuntos
Variação Genética/genética , Filogenia , Aranhas/classificação , Animais , Formigas/genética , Teorema de Bayes , Evolução Biológica , DNA Mitocondrial/genética , Fósseis , RNA Ribossômico/genética , Análise de Sequência de DNA , Aranhas/genética
8.
Mol Phylogenet Evol ; 82 Pt A: 330-40, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25450103

RESUMO

Determining factors that facilitate the transition from a solitary to a social lifestyle is a major challenge in evolutionary biology, especially in taxa that are usually aggressive towards conspecifics. Most spiders live solitarily and few species are known to be social. Nevertheless, sociality has evolved multiple times across several families and nearly all studied social lineages have originated from a periodically social (subsocial) ancestor. Group-living crab spiders (Thomisidae) are exclusively found in Australia and differ from most other social spiders because they lack a communal capture web. Three of the group-living species were placed in the genus Diaea and another in the genus Xysticus. Most Australian thomisids are, however, difficult to identify as most descriptions are old and of poor quality, and the genera Diaea and Xysticus may not correspond to monophyletic groups. Here, we clarify the phylogenetic relationships of the four group-living Australian thomisids and conclude that amongst these subsociality has evolved two to three times independently. The subsocial Xysticus bimaculatus is not closely related to any of the social Diaea and an independent origin of subsociality is likely in this case. The presented data indicates that within Diaea two origins of subsociality are possible. Our results help to understand the evolution of sociality in thomisids and support the hypothesis that permanent sociality in spiders has evolved multiple times relatively recently from subsocial ancestors.


Assuntos
Comportamento Animal , Evolução Biológica , Filogenia , Comportamento Social , Aranhas/classificação , Animais , Austrália , Teorema de Bayes , Feminino , Funções Verossimilhança , Masculino , Modelos Genéticos , Análise de Sequência de DNA , Aranhas/genética
9.
Mol Phylogenet Evol ; 93: 107-17, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26220837

RESUMO

Islands have played a key role in understanding species formation ever since Darwin's work on the Galapagos and Wallace's work in the Malay Archipelago. Like oceanic islands, habitat 'islands', such as mountaintops and caves similarly may drive diversification. Here we examine patterns of diversification in the tailless whip spider genus Phrynus Larmarck, 1809 (Amblypygida: Phrynidae) a system that shows evidence of diversification under the influence of 'islands within islands'. We estimate phylogeographic history and measure genetic diversity among representatives of three nominal Phrynus species from epigean and cave systems of Puerto Rico and nearby islands. Data from five loci (mitochondrial 12S, 16S, Cox1; nuclear H3, 28S) were used to generate phylogenetic hypotheses and to assess species monophyly and phylogeographic relationships. Genetic divergences and population limits were estimated and assessed using the Geneious barcoding plugin and the genealogical sorting index. We find that mtDNA sequence divergences within each of the three Phrynus species range between 15% and 20%. Genetic divergence is structured at three spatial scales: among islands in a manner consistent with the GAARlandia hypothesis, among bedrock formations within Puerto Rico, and among caves within these formations. Every isolated cave system contains a unique mtDNA genetic lineage of Phrynus, with divergence among cave systems far exceeding that within. In some localities epigean specimens nest among cave taxa, in others caves are monophyletic. Remarkably, clades that show up to 20% mtDNA sequence divergence show little or no variation in the nuclear markers. We interpret this pattern as resulting from extreme conservation of our nuclear markers rather than male sex-biased dispersal, based on high conservation of 28S and H3 between our individuals and other amblypygid genera that are restricted to Africa. While this study includes but a tiny fraction of Caribbean caves, our findings suggest Phrynus may be much more diverse than hitherto thought, at least in terms of mtDNA diversity, and that the arthropod fauna of caves may represent a dimension of biodiversity that is yet to be discovered in the Caribbean biodiversity hotspot.


Assuntos
Aranhas/genética , Distribuição Animal , Animais , Biodiversidade , Cavernas , DNA Mitocondrial/genética , Especiação Genética , Variação Genética , Tipagem de Sequências Multilocus , Filogenia , Filogeografia , Porto Rico , Aranhas/classificação
10.
Mol Phylogenet Evol ; 73: 190-201, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24462637

RESUMO

Eusociality has arisen repeatedly and independently in the history of insects, often leading to evolutionary success and ecological dominance. Eusocial wasps of the genera Vespula and Dolichovespula, or yellowjackets, have developed advanced social traits in a relatively small number of species. The origin of traits such as effective paternity and colony size has been interpreted with reference to an established phylogenetic hypothesis that is based on phenotypic data, while the application of molecular evidence to phylogenetic analysis within yellowjackets has been limited. Here, we investigate the evolutionary history of yellowjackets on the basis of mitochondrial and nuclear markers (nuclear: 28S, EF1α, Pol II, and wg; mitochondrial: 12S, 16S, COI, COII, and Cytb). We use these data to test the monophyly of yellowjackets and species groups, and resolve species-level relationships within each genus using parsimony and Bayesian inference. Our results indicate that a yellowjacket clade is either weakly supported (parsimony) or rejected (Bayesian inference). However, the monophyly of each yellowjacket genus as well as species groups are strongly supported and concordant between methods. Our results agree with previous studies regarding the monophyly of the Vespula vulgaris group and the sister relationship between the V. rufa and V. squamosa groups. This suggests convergence of large colony size and high effective paternity in the vulgaris group and V. squamosa, or a single origin of both traits in the most recent common ancestor of all Vespula species and their evolutionary reversal in the rufa group.


Assuntos
Loci Gênicos/genética , Filogenia , Vespas/classificação , Vespas/genética , Animais , Teorema de Bayes , DNA Mitocondrial/genética , Marcadores Genéticos/genética , Reprodutibilidade dos Testes , Análise de Sequência de DNA
11.
Curr Biol ; 34(1): R30-R33, 2024 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-38194927

RESUMO

Broad ecological sampling of spider silks from multiple species shows that the biomechanical properties of spider silk reflect the habitat in which their orb webs are built. Silk toughness is highest in habitats with dense rain.


Assuntos
Internet , Chuva , Fenômenos Biomecânicos , Seda
12.
Mol Phylogenet Evol ; 69(3): 895-905, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23831456

RESUMO

Huntsman spiders (Sparassidae) are a diverse group with a worldwide distribution, yet are poorly known both taxonomically and phylogenetically. They are particularly diverse in Australia where an endemic lineage, Deleninae, has diversified to form nearly 100 species. One unusual species, Delena cancerides, has been believed to be the sole group-living sparassid. Unlike all of the other subsocial and social spiders which are capture-web based or live in silken tunnels, D. cancerides are non-web building spiders that live in large matrilineal colonies of a single adult female and her offspring from multiple clutches of under the bark of dead trees. Here we report the discovery of two additional prolonged subsocial sparassid species, currently in Eodelena but here formally proposed as a synonomy of Delena (new synonoymy), Delena (Eodelena) lapidicola and D. (E.) melanochelis. We briefly describe their social demographics, behavior, and habitat use. In order to understand the evolutionary relationships among these species, and thus origin of sociality and other traits in this group, we also offer the first molecular phylogeny of Deleninae and relatives. We employ model based phylogenetic analyses on two mtDNA and three nuDNA loci using maximum likelihood and Bayesian methods, including both 'classical' concatenation approach as well as coalescent-based analysis of species trees from gene trees. Our results support the hypothesis that the delenine huntsman spiders are a monophyletic Australian radiation, approximately 23 million year old, and indicate that the current ten genera should be merged to six genera in four clades. Our findings are inconsistent with some relatively recent changes in the taxonomy of Deleninae. The three known group-living delenine species are related and likely represent a single origin of sociality with a single reversal to solitary life-styles. Our results provide strong support for the classical Isopeda, but not for the recent splitting of that taxon into Isopeda, Isopedella, and Holconia. Another moderately supported clade within Deleninae unites three genera (Pediana, Beregama, Typostola) that, while morphologically diverse, all share extraordinary locomotory speed. A fourth clade is comprised of the speciose Neosparassus, containing Zachria. In sum, our study results in a robust phylogeny of Deleninae, casting light on the origin of sociality in the group, and facilitating future work on these unusual spiders.


Assuntos
Evolução Biológica , Filogenia , Comportamento Social , Aranhas/classificação , Animais , Austrália , Teorema de Bayes , Núcleo Celular/genética , DNA Mitocondrial/genética , Funções Verossimilhança , Análise de Sequência de DNA , Aranhas/genética
13.
Mol Phylogenet Evol ; 69(3): 961-79, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23811436

RESUMO

The pantropical orb web spider family Nephilidae is known for the most extreme sexual size dimorphism among terrestrial animals. Numerous studies have made Nephilidae, particularly Nephila, a model lineage in evolutionary research. However, a poorly understood phylogeny of this lineage, relying only on morphology, has prevented thorough evolutionary syntheses of nephilid biology. We here use three nuclear and five mitochondrial genes for 28 out of 40 nephilid species to provide a more robust nephilid phylogeny and infer clade ages in a fossil-calibrated Bayesian framework. We complement the molecular analyses with total evidence analysis including morphology. All analyses find strong support for nephilid monophyly and exclusivity and the monophyly of the genera Herennia and Clitaetra. The inferred phylogenetic structure within Nephilidae is novel and conflicts with morphological phylogeny and traditional taxonomy. Nephilengys species fall into two clades, one with Australasian species (true Nephilengys) as sister to Herennia, and another with Afrotropical species (Nephilingis Kuntner new genus) as sister to a clade containing Clitaetra plus most currently described Nephila. Surprisingly, Nephila is also diphyletic, with true Nephila containing N. pilipes+N. constricta, and the second clade with all other species sister to Clitaetra; this "Nephila" clade is further split into an Australasian clade that also contains the South American N. sexpunctata and the Eurasian N. clavata, and an African clade that also contains the Panamerican N. clavipes. An approximately unbiased test constraining the monophyly of Nephilengys, Nephila, and Nephilinae (Nephila, Nephilengys, Herennia), respectively, rejected Nephilengys monophyly, but not that of Nephila and Nephilinae. Further data are therefore necessary to robustly test these two new, but inconclusive findings, and also to further test the precise placement of Nephilidae within the Araneoidea. For divergence date estimation we set the minimum bound for the stems of Nephilidae at 40 Ma and of Nephila at 16 Ma to accommodate Palaeonephila from Baltic amber and Dominican Nephila species, respectively. We also calibrated and dated the phylogeny under three different interpretations of the enigmatic 165 Ma fossil Nephila jurassica, which we suspected based on morphology to be misplaced. We found that by treating N. jurassica as stem Nephila or nephilid the inferred clade ages were vastly older, and the mitochondrial substitution rates much slower than expected from other empirical spider data. This suggests that N. jurassica is not a Nephila nor a nephilid, but possibly a stem orbicularian. The estimated nephilid ancestral age (40-60 Ma) rejects a Gondwanan origin of the family as most of the southern continents were already split at that time. The origin of the family is equally likely to be African, Asian, or Australasian, with a global biogeographic history dominated by dispersal events. A reinterpretation of web architecture evolution suggests that a partially arboricolous, asymmetric orb web with a retreat, as exemplified by both groups of "Nephilengys", is plesiomorphic in Nephilidae, that this architecture was modified into specialized arboricolous webs in Herennia and independently in Clitaetra, and that the web became aerial, gigantic, and golden independently in both "Nephila" groups. The new topology questions previously hypothesized gradual evolution of female size from small to large, and rather suggests a more mosaic evolutionary pattern with independent female size increases from medium to giant in both "Nephila" clades, and two reversals back to medium and small; combined with male size evolution, this pattern will help detect gross evolutionary events leading to extreme sexual size dimorphism, and its morphological and behavioral correlates.


Assuntos
Evolução Biológica , Filogenia , Aranhas/classificação , Animais , Teorema de Bayes , Tamanho Corporal , Feminino , Fósseis , Funções Verossimilhança , Masculino , Modelos Genéticos , Filogeografia , RNA Ribossômico 18S/genética , RNA Ribossômico 28S/genética , Análise de Sequência de DNA , Caracteres Sexuais , Aranhas/anatomia & histologia , Aranhas/genética
14.
Naturwissenschaften ; 100(11): 1031-40, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24177705

RESUMO

Latitude, rainfall, and productivity have been shown to influence social organisation and level of sociality in arthropods on large geographic scales. Social spiders form permanent group-living societies where they cooperate in brood care, web maintenance, and foraging. Sociality has evolved independently in a number of unrelated spider genera and may reflect convergent evolutionary responses to common environmental drivers. The genus Anelosimus contains a third of approximately 25 described permanently social spider species, eight to nine species that all occur in the Americas. To test for environmental correlates of sociality in Anelosimus across the Americas, we used logistic regression to detect effects of annual rainfall, productivity, and precipitation seasonality on the relative likelihood of occurrence of social and non-social Anelosimus spiders. Our analyses show that social species tend to occur at higher annual rainfall and productivity than non-social species, supporting the hypothesised effects of these environmental variables on the geographical distribution of social species. We did not find support for the hypothesis that permanently social species occur in areas with low precipitation seasonality. High annual precipitation and, to less extent, high productivity favour the occurrence of permanently group-living Anelosimus spiders relative to subsocial and solitary species. These results are partially consistent with previous findings for the Old World spider genus Stegodyphus, where a link between high habitat productivity and sociality was also found. Unlike Anelosimus, however, Stegodyphus typically occur in dry habitats negating a general importance of high precipitation for sociality. Sociality in spiders thus seems to be strongly linked to productivity, probably reflecting the need for relatively high availability of large prey to sustain social colonies.


Assuntos
Meio Ambiente , Comportamento Social , Aranhas/fisiologia , América , Animais , Modelos Logísticos , Chuva , Estações do Ano
15.
Naturwissenschaften ; 100(3): 263-8, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23354758

RESUMO

The biogenetic law posits that the ontogeny of an organism recapitulates the pattern of evolutionary changes. Morphological evidence has offered some support for, but also considerable evidence against, the hypothesis. However, biogenetic law in behavior remains underexplored. As physical manifestation of behavior, spider webs offer an interesting model for the study of ontogenetic behavioral changes. In orb-weaving spiders, web symmetry often gets distorted through ontogeny, and these changes have been interpreted to reflect the biogenetic law. Here, we test the biogenetic law hypothesis against the alternative, the optimal foraging hypothesis, by studying the allometry in Leucauge venusta orb webs. These webs range in inclination from vertical through tilted to horizontal; biogenetic law predicts that allometry relates to ontogenetic stage, whereas optimal foraging predicts that allometry relates to gravity. Specifically, pronounced asymmetry should only be seen in vertical webs under optimal foraging theory. We show that, through ontogeny, vertical webs in L. venusta become more asymmetrical in contrast to tilted and horizontal webs. Biogenetic law thus cannot explain L. venusta web allometry, but our results instead support optimization of foraging area in response to spider size.


Assuntos
Comportamento Alimentar/fisiologia , Animais , Evolução Biológica , Tamanho Corporal , Aranhas/fisiologia
16.
Integr Zool ; 18(4): 736-745, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36054470

RESUMO

Detritus-based, bell-shaped cobwebs are an ideal model to research the plasticity of web architecture due to clearly separate defense and foraging components. We performed a thorough field investigation on the web architectures of Campanicola campanulata to research its cobweb architecture variation during the growth process and analyzed the energy trade-offs between foraging and defense at different developmental stages. The results indicated that as female C. campanulata grew, they dedicated more energy to defense and less energy to foraging, while males dedicated less energy to both defense and foraging through the growth period. We hypothesize that cobweb spiders dedicate an increasing amount of energy to safety based on evidence obtained from their life-history. Meanwhile, we present a new model to investigate web architecture variation and provide a new framework to quantify the energy allocation between foraging and predator defense for web-building spiders.


Assuntos
Aranhas , Feminino , Animais , Comportamento Predatório
17.
Sci Adv ; 9(51): eadj0348, 2023 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-38117895

RESUMO

Subterranean animals living in perpetual darkness may maintain photoresponse. However, the evolutionary processes behind the conflict between eye loss and maintenance of the photoresponse remain largely unknown. We used Leptonetela spiders to investigate the driving forces behind the maintenance of the photoresponse in cave-dwelling spiders. Our behavioral experiments showed that all eyeless/reduced-eyed cave-dwelling species retained photophobic response and that they had substantially decreased survival at cave entrances due to weak drought resistance. The transcriptomic analysis demonstrated that nearly all phototransduction pathway genes were present and that all tested phototransduction pathway genes were subjected to strong functional constraints in cave-dwelling species. Our results suggest that cave-dwelling eyeless spiders still use light and that light detection likely plays a role in avoiding the cave entrance habitat. This study confirms that some eyeless subterranean animals have retained their photosensitivity due to natural selection and provides a case of mismatch between phenotype and genotype or physiological function in a long-term evolutionary process.


Assuntos
Aranhas , Animais , Evolução Biológica , Cavernas , Aranhas/genética
18.
Naturwissenschaften ; 99(12): 1021-30, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23093096

RESUMO

Cooperation and group living often evolves through kin selection. However, associations between unrelated organisms, such as different species, can evolve if both parties benefit from the interaction. Group living is rare in spiders, but occurs in cooperative, permanently social spiders, as well as in territorial, colonial spiders. Mixed species spider colonies, involving closely related species, have rarely been documented. We examined social interactions in newly discovered mixed-species colonies of theridiid spiders on Bali, Indonesia. Our aim was to test the degree of intra- and interspecific tolerance, aggression and cooperation through behavioural experiments and examine the potential for adoption of foreign brood. Morphological and genetic analyses confirmed that colonies consisted of two related species Chikunia nigra (O.P. Cambridge, 1880) new combination (previously Chrysso nigra) and a yet undescribed Chikunia sp. Females defended territories and did not engage in cooperative prey capture, but interestingly, both species seemed to provide extended maternal care of young and indiscriminate care for foreign brood. Future studies may reveal whether these species adopt only intra-specific young, or also inter-specifically. We classify both Chikunia species subsocial and intra- and interspecifically colonial, and discuss the evolutionary significance of a system where one or both species may potentially benefit from mutual tolerance and brood adoption.


Assuntos
Comportamento Animal/fisiologia , Comportamento Social , Aranhas/fisiologia , Agressão , Animais , Código de Barras de DNA Taxonômico , Complexo IV da Cadeia de Transporte de Elétrons/genética , Feminino , Indonésia , Masculino , Filogenia , RNA Ribossômico 28S/genética , Razão de Masculinidade , Especificidade da Espécie , Aranhas/genética
19.
Proc Natl Acad Sci U S A ; 106(13): 5229-34, 2009 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-19289848

RESUMO

The evolutionary diversification of spiders is attributed to spectacular innovations in silk. Spiders are unique in synthesizing many different kinds of silk, and using silk for a variety of ecological functions throughout their lives, particularly to make prey-catching webs. Here, we construct a broad higher-level phylogeny of spiders combining molecular data with traditional morphological and behavioral characters. We use this phylogeny to test the hypothesis that the spider orb web evolved only once. We then examine spider diversification in relation to different web architectures and silk use. We find strong support for a single origin of orb webs, implying a major shift in the spinning of capture silk and repeated loss or transformation of orb webs. We show that abandonment of costly cribellate capture silk correlates with the 2 major diversification events in spiders (1). Replacement of cribellate silk by aqueous silk glue may explain the greater diversity of modern orb-weaving spiders (Araneoidea) compared with cribellate orb-weaving spiders (Deinopoidea) (2). Within the "RTA clade," which is the sister group to orb-weaving spiders and contains half of all spider diversity, >90% of species richness is associated with repeated loss of cribellate silk and abandonment of prey capture webs. Accompanying cribellum loss in both groups is a release from substrate-constrained webs, whether by aerially suspended webs, or by abandoning webs altogether. These behavioral shifts in silk and web production by spiders thus likely played a key role in the dramatic evolutionary success and ecological dominance of spiders as predators of insects.


Assuntos
Evolução Biológica , Seda/genética , Aranhas/genética , Animais , Biodiversidade , Filogenia , Comportamento Predatório
20.
Zookeys ; 1125: 33-46, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36761284

RESUMO

The spider genus Episinus Walckenaer, 1809 currently contains 66 species worldwide, mostly in warm temperate to tropical areas. This paper describes two new Chinese Episinus species: E.ornithorrhynchus sp. nov. (♂♀) and E.papilionaceous sp. nov. (♀). We add these two new and one known Episinus species to the phylogenetic data matrix of Liu et al. 2016 and reanalyze the data. The new phylogeny recovers the monophyly of Episinus and supports its division into two groups, a finding also supported by morphology.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA