Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Am J Hum Genet ; 109(4): 601-617, 2022 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-35395208

RESUMO

Neurodevelopmental disorders are highly heterogenous conditions resulting from abnormalities of brain architecture and/or function. FBXW7 (F-box and WD-repeat-domain-containing 7), a recognized developmental regulator and tumor suppressor, has been shown to regulate cell-cycle progression and cell growth and survival by targeting substrates including CYCLIN E1/2 and NOTCH for degradation via the ubiquitin proteasome system. We used a genotype-first approach and global data-sharing platforms to identify 35 individuals harboring de novo and inherited FBXW7 germline monoallelic chromosomal deletions and nonsense, frameshift, splice-site, and missense variants associated with a neurodevelopmental syndrome. The FBXW7 neurodevelopmental syndrome is distinguished by global developmental delay, borderline to severe intellectual disability, hypotonia, and gastrointestinal issues. Brain imaging detailed variable underlying structural abnormalities affecting the cerebellum, corpus collosum, and white matter. A crystal-structure model of FBXW7 predicted that missense variants were clustered at the substrate-binding surface of the WD40 domain and that these might reduce FBXW7 substrate binding affinity. Expression of recombinant FBXW7 missense variants in cultured cells demonstrated impaired CYCLIN E1 and CYCLIN E2 turnover. Pan-neuronal knockdown of the Drosophila ortholog, archipelago, impaired learning and neuronal function. Collectively, the data presented herein provide compelling evidence of an F-Box protein-related, phenotypically variable neurodevelopmental disorder associated with monoallelic variants in FBXW7.


Assuntos
Proteína 7 com Repetições F-Box-WD , Transtornos do Neurodesenvolvimento , Ubiquitinação , Proteína 7 com Repetições F-Box-WD/química , Proteína 7 com Repetições F-Box-WD/genética , Proteína 7 com Repetições F-Box-WD/metabolismo , Células Germinativas , Mutação em Linhagem Germinativa , Humanos , Transtornos do Neurodesenvolvimento/genética , Complexo de Endopeptidases do Proteassoma/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo
2.
J Med Genet ; 61(2): 132-141, 2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-37580113

RESUMO

BACKGROUND: Pathogenic variants in the zinc finger protein coding genes are rare causes of intellectual disability and congenital malformations. Mutations in the ZNF148 gene causing GDACCF syndrome (global developmental delay, absent or hypoplastic corpus callosum, dysmorphic facies; MIM #617260) have been reported in five individuals so far. METHODS: As a result of an international collaboration using GeneMatcher Phenome Central Repository and personal communications, here we describe the clinical and molecular genetic characteristics of 22 previously unreported individuals. RESULTS: The core clinical phenotype is characterised by developmental delay particularly in the domain of speech development, postnatal growth retardation, microcephaly and facial dysmorphism. Corpus callosum abnormalities appear less frequently than suggested by previous observations. The identified mutations concerned nonsense or frameshift variants that were mainly located in the last exon of the ZNF148 gene. Heterozygous deletion including the entire ZNF148 gene was found in only one case. Most mutations occurred de novo, but were inherited from an affected parent in two families. CONCLUSION: The GDACCF syndrome is clinically diverse, and a genotype-first approach, that is, exome sequencing is recommended for establishing a genetic diagnosis rather than a phenotype-first approach. However, the syndrome may be suspected based on some recurrent, recognisable features. Corpus callosum anomalies were not as constant as previously suggested, we therefore recommend to replace the term 'GDACCF syndrome' with 'ZNF148-related neurodevelopmental disorder'.


Assuntos
Deficiência Intelectual , Leucoencefalopatias , Humanos , Criança , Corpo Caloso , Fácies , Mutação/genética , Fenótipo , Genótipo , Deficiência Intelectual/genética , Deficiência Intelectual/diagnóstico , Síndrome , Deficiências do Desenvolvimento/patologia , Proteínas de Ligação a DNA/genética , Fatores de Transcrição/genética
3.
Am J Hum Genet ; 107(3): 544-554, 2020 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-32730804

RESUMO

RNA polymerase II interacts with various other complexes and factors to ensure correct initiation, elongation, and termination of mRNA transcription. One of these proteins is SR-related CTD-associated factor 4 (SCAF4), which is important for correct usage of polyA sites for mRNA termination. Using exome sequencing and international matchmaking, we identified nine likely pathogenic germline variants in SCAF4 including two splice-site and seven truncating variants, all residing in the N-terminal two thirds of the protein. Eight of these variants occurred de novo, and one was inherited. Affected individuals demonstrated a variable neurodevelopmental disorder characterized by mild intellectual disability, seizures, behavioral abnormalities, and various skeletal and structural anomalies. Paired-end RNA sequencing on blood lymphocytes of SCAF4-deficient individuals revealed a broad deregulation of more than 9,000 genes and significant differential splicing of more than 2,900 genes, indicating an important role of SCAF4 in mRNA processing. Knockdown of the SCAF4 ortholog CG4266 in the model organism Drosophila melanogaster resulted in impaired locomotor function, learning, and short-term memory. Furthermore, we observed an increased number of active zones in larval neuromuscular junctions, representing large glutamatergic synapses. These observations indicate a role of CG4266 in nervous system development and function and support the implication of SCAF4 in neurodevelopmental phenotypes. In summary, our data show that heterozygous, likely gene-disrupting variants in SCAF4 are causative for a variable neurodevelopmental disorder associated with impaired mRNA processing.


Assuntos
Deficiência Intelectual/genética , Transtornos do Neurodesenvolvimento/genética , Convulsões/genética , Fatores de Processamento de Serina-Arginina/genética , Animais , Criança , Drosophila melanogaster/genética , Feminino , Técnicas de Silenciamento de Genes , Variação Genética/genética , Heterozigoto , Humanos , Deficiência Intelectual/fisiopatologia , Locomoção/genética , Masculino , Mutação/genética , Transtornos do Neurodesenvolvimento/fisiopatologia , RNA Polimerase II/genética , Processamento Pós-Transcricional do RNA/genética , RNA Mensageiro/genética , Convulsões/fisiopatologia , Sequenciamento do Exoma
4.
Genet Med ; 23(3): 498-507, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33144682

RESUMO

PURPOSE: Exome sequencing often identifies pathogenic genetic variants in patients with undiagnosed diseases. Nevertheless, frequent findings of variants of uncertain significance necessitate additional efforts to establish causality before reaching a conclusive diagnosis. To provide comprehensive genomic testing to patients with undiagnosed disease, we established an Individualized Medicine Clinic, which offered clinical exome testing and included a Translational Omics Program (TOP) that provided variant curation, research activities, or research exome sequencing. METHODS: From 2012 to 2018, 1101 unselected patients with undiagnosed diseases received exome testing. Outcomes were reviewed to assess impact of the TOP and patient characteristics on diagnostic rates through descriptive and multivariate analyses. RESULTS: The overall diagnostic yield was 24.9% (274 of 1101 patients), with 174 (15.8% of 1101) diagnosed on the basis of clinical exome sequencing alone. Four hundred twenty-three patients with nondiagnostic or without access to clinical exome sequencing were evaluated by the TOP, with 100 (9% of 1101) patients receiving a diagnosis, accounting for 36.5% of the diagnostic yield. The identification of a genetic diagnosis was influenced by the age at time of testing and the disease phenotype of the patient. CONCLUSION: Integration of translational research activities into clinical practice of a tertiary medical center can significantly increase the diagnostic yield of patients with undiagnosed disease.


Assuntos
Exoma , Doenças não Diagnosticadas , Exoma/genética , Testes Genéticos , Humanos , Fenótipo , Pesquisa Translacional Biomédica , Sequenciamento do Exoma
6.
Nat Genet ; 54(10): 1534-1543, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36195757

RESUMO

Sleep apnea is a common disorder that represents a global public health burden. KCNK3 encodes TASK-1, a K+ channel implicated in the control of breathing, but its link with sleep apnea remains poorly understood. Here we describe a new developmental disorder with associated sleep apnea (developmental delay with sleep apnea, or DDSA) caused by rare de novo gain-of-function mutations in KCNK3. The mutations cluster around the 'X-gate', a gating motif that controls channel opening, and produce overactive channels that no longer respond to inhibition by G-protein-coupled receptor pathways. However, despite their defective X-gating, these mutant channels can still be inhibited by a range of known TASK channel inhibitors. These results not only highlight an important new role for TASK-1 K+ channels and their link with sleep apnea but also identify possible therapeutic strategies.


Assuntos
Mutação com Ganho de Função , Síndromes da Apneia do Sono , Criança , Deficiências do Desenvolvimento , Humanos , Mutação/genética , Proteínas do Tecido Nervoso , Canais de Potássio de Domínios Poros em Tandem , Síndromes da Apneia do Sono/genética
7.
Nat Rev Cardiol ; 17(5): 286-297, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31605094

RESUMO

Given the global burden of heart failure, strategies to understand the underlying cause or to provide prognostic information are critical to reducing the morbidity and mortality associated with this highly prevalent disease. Cardiomyopathies often have a genetic cause, and the field of heart failure genetics is progressing rapidly. Through a deliberate investigation, evaluation for a familial component of cardiomyopathy can lead to increased identification of pathogenic genetic variants. Much research has also been focused on identifying markers of risk in patients with cardiomyopathy with the use of genetic testing. Advances in our understanding of genetic variants have been slightly offset by an increased recognition of the heterogeneity of disease expression. Greater breadth of genetic testing can increase the likelihood of identifying a variant of uncertain significance, which is resolved only rarely by cellular functional validation and segregation analysis. To increase the use of genetics in heart failure clinics, increased availability of genetic counsellors and other providers with experience in genetics is necessary. Ultimately, through ongoing research and increased clinical experience in cardiomyopathy genetics, an improved understanding of the disease processes will facilitate better clinical decision-making about the therapies offered, exemplifying the implementation of precision medicine.


Assuntos
Cardiomiopatia Dilatada/genética , Gerenciamento Clínico , Insuficiência Cardíaca/etiologia , Cardiomiopatia Dilatada/complicações , Cardiomiopatia Dilatada/diagnóstico , Testes Genéticos , Insuficiência Cardíaca/genética , Humanos
8.
Eur J Med Genet ; 63(4): 103817, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31778854

RESUMO

BACKGROUND: DGAT1, a gene encoding a protein involved in lipid metabolism, has been recently implicated in causing a rare nutritional and digestive disease presenting as Congenital Diarrheal Disorder (CDD). Genetic causes of malnutrition can be classified as metabolic disorders, caused by loss of a specific enzyme's function. However, disease driven by genetic variants in lipid metabolism genes is not well understood, and additional information is needed to better understand these effects. METHODS: We gathered a multi-institutional cohort of undiagnosed patients with a constellation of phenotypes presenting as malnutrition and metal ion dysregulation. Clinical Whole Exome Sequencing (WES) was performed on four patients and their unaffected parents. We prioritized genetic variants based on multiple criteria including population allele frequency and presumed inheritance pattern, and identified a candidate gene. Computational modeling was used to investigate if the altered amino acids are likely to result in a dysfunctional enzyme. RESULTS: We identified a multi-institutional cohort of patients presenting with malnutrition-like symptoms and likely pathogenic genomic variants within DGAT1. Multiple approaches were used to profile the effect these variants have on protein structure and function. Laboratory and nutritional intervention studies showed rapid and robust patient responses. CONCLUSIONS: This report adds on to the database for existing mutations known within DGAT1, a gene recently implicated with CDD, and also expands its clinical spectrum. Identification of these DGAT1 mutations by WES has allowed for changes in the patients' nutritional rehabilitation, reversed growth failure and enabled them to be weaned off of total parenteral nutrition (TPN).


Assuntos
Diacilglicerol O-Aciltransferase/genética , Diarreia/genética , Desnutrição/genética , Diarreia/dietoterapia , Feminino , Humanos , Lactente , Recém-Nascido , Masculino , Desnutrição/dietoterapia , Mutação , Sequenciamento do Exoma
9.
Sci Adv ; 6(4): eaax0021, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-32010779

RESUMO

Lysine acetyltransferase 6A (KAT6A) and its paralog KAT6B form stoichiometric complexes with bromodomain- and PHD finger-containing protein 1 (BRPF1) for acetylation of histone H3 at lysine 23 (H3K23). We report that these complexes also catalyze H3K23 propionylation in vitro and in vivo. Immunofluorescence microscopy and ATAC-See revealed the association of this modification with active chromatin. Brpf1 deletion obliterates the acylation in mouse embryos and fibroblasts. Moreover, we identify BRPF1 variants in 12 previously unidentified cases of syndromic intellectual disability and demonstrate that these cases and known BRPF1 variants impair H3K23 propionylation. Cardiac anomalies are present in a subset of the cases. H3K23 acylation is also impaired by cancer-derived somatic BRPF1 mutations. Valproate, vorinostat, propionate and butyrate promote H3K23 acylation. These results reveal the dual functionality of BRPF1-KAT6 complexes, shed light on mechanisms underlying related developmental disorders and various cancers, and suggest mutation-based therapy for medical conditions with deficient histone acylation.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas de Ligação a DNA/metabolismo , Histona Acetiltransferases/metabolismo , Histonas/metabolismo , Neoplasias/etiologia , Neoplasias/metabolismo , Transtornos do Neurodesenvolvimento/etiologia , Transtornos do Neurodesenvolvimento/metabolismo , Acetilação , Proteínas Adaptadoras de Transdução de Sinal/genética , Sequência de Aminoácidos , Animais , Encéfalo/anormalidades , Encéfalo/diagnóstico por imagem , Linhagem Celular , Análise Mutacional de DNA , Proteínas de Ligação a DNA/genética , Suscetibilidade a Doenças , Predisposição Genética para Doença , Histona Acetiltransferases/genética , Humanos , Imageamento por Ressonância Magnética , Camundongos , Camundongos Knockout , Modelos Biológicos , Complexos Multiproteicos/metabolismo , Mutação , Neoplasias/diagnóstico , Transtornos do Neurodesenvolvimento/diagnóstico , Fenótipo , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Processamento de Proteína Pós-Traducional , Síndrome
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA