Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Water Sci Technol ; 89(8): 2105-2117, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38678412

RESUMO

Photodynamic processes have found widespread application in therapies. These processes involve photosensitizers (PSs) that, when excited by specific light wavelengths and in the presence of molecular oxygen, generate reactive oxygen species (ROS), that target cells leading to inactivation. Photodynamic action has gained notable attention in environmental applications, particularly against pathogens and antibiotic-resistant bacteria (ARB) that pose a significant challenge to public health. However, environmental matrices frequently encompass additional contaminants and interferents, including microplastics (MPs), which are pollutants of current concern. Their presence in water and effluents has been extensively documented, highlighting their impact on conventional treatment methods, but this information remains scarce in the context of photodynamic inactivation (PDI) setups. Here, we described the effects of polyvinyl chloride (PVC) microparticles in PDI targeting Staphylococcus aureus and its methicillin-resistant strain (MRSA), using curcumin as a PS under blue light. The presence of PVC microparticles does not hinder ROS formation; however, depending on its concentration, it can impact bacterial inactivation. Our results underscore that PDI remains a potent method for reducing bacterial concentrations in water and wastewater containing ARB, even in highly contaminated scenarios with MPs.


Assuntos
Staphylococcus aureus Resistente à Meticilina , Microplásticos , Cloreto de Polivinila , Staphylococcus aureus , Cloreto de Polivinila/química , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Staphylococcus aureus Resistente à Meticilina/efeitos da radiação , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/efeitos da radiação , Espécies Reativas de Oxigênio/metabolismo , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/química
2.
J Phys Chem A ; 126(43): 7852-7863, 2022 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-36282217

RESUMO

The structural and electronic properties of 2,3-dimethoxybenzaldehyde (2,3-DMB), 5-bromo-2,3-dimethoxybenzaldehyde (5-BRB), and 6-bromo-2,3-dimethoxybenzaldehyde (6-BRB) were extensively discussed with emphasis on linear and nonlinear optical responses. The intermolecular interactions were comparatively studied by Hirshfeld surfaces, quantum theory of atoms in molecules (QTAIM), and natural bond orbitals (NBOs), indicating that bromine substitution decreases the H···H and C···H contacts and increases H···Br and Br···Br closed-shell interactions on crystalline arrangements. The frontier molecular orbitals and molecular electrostatic potential map, carried out at the CAM-B3LYP/6-311++G(d,p) level of theory, showed that the kinetic stability occurs in the increasing order 6-BRB < 5-BRB < 2.3-DMB. The bromine atom has a beneficial effect on the nonlinear third-order susceptibility of 2,3-DMB, with theoretical predictions of 89.54 ×10-22 and 83.15 ×10-22 (m/V)2 for 6-BRB and 5-BRB, respectively. These findings were favorably compared with available theoretical and experimental data of other organic crystals that may be promising as NLO materials.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA