Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(8)2023 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-37108839

RESUMO

This paper assesses the association of the insertion/deletion ACE (angiotensin-converting enzyme) variant (rs1799752 I/D) and the serum ACE activity with the severity of COVID-19 as well as its impact on post-COVID-19, and we compare these associations with those for patients with non-COVID-19 respiratory disorders. We studied 1252 patients with COVID-19, 104 subjects recovered from COVID-19, and 74 patients hospitalized with a respiratory disease different from COVID-19. The rs1799752 ACE variant was assessed using TaqMan® Assays. The serum ACE activity was determined using a colorimetric assay. The DD genotype was related to risk for invasive mechanical ventilation (IMV) requirement as an indicator of COVID-19 severity when compared to the frequencies of II + ID genotypes (p = 0.025, OR = 1.428, 95% CI = 1.046-1.949). In addition, this genotype was significantly higher in COVID-19 and post-COVID-19 groups than in the non-COVID-19 subjects. The serum ACE activity levels were lower in the COVID-19 group (22.30 U/L (13.84-32.23 U/L)), which was followed by the non-COVID-19 (27.94 U/L (20.32-53.36 U/L)) and post-COVID-19 subjects (50.00 U/L (42.16-62.25 U/L)). The DD genotype of the rs1799752 ACE variant was associated with the IMV requirement in patients with COVID-19, and low serum ACE activity levels could be related to patients with severe disease.


Assuntos
COVID-19 , Polimorfismo Genético , Humanos , COVID-19/genética , Genótipo , Peptidil Dipeptidase A/genética , Carboxipeptidases/metabolismo
2.
EMBO J ; 36(17): 2567-2580, 2017 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-28701483

RESUMO

The role of second messengers in the diversion of cellular processes by pathogens remains poorly studied despite their importance. Among these, Ca2+ virtually regulates all known cell processes, including cytoskeletal reorganization, inflammation, or cell death pathways. Under physiological conditions, cytosolic Ca2+ increases are transient and oscillatory, defining the so-called Ca2+ code that links cell responses to specific Ca2+ oscillatory patterns. During cell invasion, Shigella induces atypical local and global Ca2+ signals. Here, we show that by hydrolyzing phosphatidylinositol-(4,5)bisphosphate, the Shigella type III effector IpgD dampens inositol-(1,4,5)trisphosphate (InsP3) levels. By modifying InsP3 dynamics and diffusion, IpgD favors the elicitation of long-lasting local Ca2+ signals at Shigella invasion sites and converts Shigella-induced global oscillatory responses into erratic responses with atypical dynamics and amplitude. Furthermore, IpgD eventually inhibits InsP3-dependent responses during prolonged infection kinetics. IpgD thus acts as a pathogen regulator of the Ca2+ code implicated in a versatility of cell functions. Consistent with this function, IpgD prevents the Ca2+-dependent activation of calpain, thereby preserving the integrity of cell adhesion structures during the early stages of infection.


Assuntos
Proteínas de Bactérias/metabolismo , Cálcio/metabolismo , Disenteria Bacilar/metabolismo , Interações Hospedeiro-Patógeno , Monoéster Fosfórico Hidrolases/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Shigella flexneri/fisiologia , Calpaína/metabolismo , Adesão Celular , Células HeLa , Humanos , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA