Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 80
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
J Vis ; 24(5): 5, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38722273

RESUMO

A key question in perception research is how stimulus variations translate into perceptual magnitudes, that is, the perceptual encoding process. As experimenters, we cannot probe perceptual magnitudes directly, but infer the encoding process from responses obtained in a psychophysical experiment. The most prominent experimental technique to measure perceptual appearance is matching, where observers adjust a probe stimulus to match a target in its appearance along the dimension of interest. The resulting data quantify the perceived magnitude of the target in physical units of the probe, and are thus an indirect expression of the underlying encoding process. In this paper, we show analytically and in simulation that data from matching tasks do not sufficiently constrain perceptual encoding functions, because there exist an infinite number of pairs of encoding functions that generate the same matching data. We use simulation to demonstrate that maximum likelihood conjoint measurement (Ho, Landy, & Maloney, 2008; Knoblauch & Maloney, 2012) does an excellent job of recovering the shape of ground truth encoding functions from data that were generated with these very functions. Finally, we measure perceptual scales and matching data for White's effect (White, 1979) and show that the matching data can be predicted from the estimated encoding functions, down to individual differences.


Assuntos
Psicofísica , Humanos , Psicofísica/métodos , Percepção Visual/fisiologia , Estimulação Luminosa/métodos
2.
J Vis ; 22(2): 2, 2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-35103757

RESUMO

One fundamental question in vision research is how the retinal input is segmented into perceptually relevant variables. A striking example of this segmentation process is transparency perception, in which luminance information in one location contributes to two perceptual variables: the properties of the transparent medium itself and of what is being seen in the background. Previous work by Robilotto et al. (2002, 2004) suggested that perceived transparency is closely related to perceived contrast, but how these two relate to retinal luminance has not been established. Here we studied the relationship between perceived transparency, perceived contrast, and image luminance using maximum likelihood conjoint measurement (MLCM). Stimuli were rendered images of variegated checkerboards that were composed of multiple reflectances and partially covered by a transparent overlay. We systematically varied the transmittance and reflectance of the transparent medium and measured perceptual scales of perceived transparency. We also measured scales of perceived contrast using cut-outs of the transparency stimuli that did not contain any geometrical cues to transparency. Perceptual scales for perceived transparency and contrast followed a remarkably similar pattern across observers. We tested the empirically observed scales against predictions from various contrast metrics and found that perceived transparency and perceived contrast were equally well predicted by a metric based on the logarithm of Michelson or Whittle contrast. We conclude that judgments of perceived transparency and perceived contrast are likely to be supported by a common mechanism, which can be computationally captured as a logarithmic contrast.


Assuntos
Sensibilidades de Contraste , Visão Ocular , Sinais (Psicologia) , Humanos , Julgamento , Matemática
3.
J Vis ; 20(4): 19, 2020 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-32343778

RESUMO

A central question in psychophysical research is how perceptual differences between stimuli translate into physical differences and vice versa. Characterizing such a psychophysical scale would reveal how a stimulus is converted into a perceptual event, particularly under changes in viewing conditions (e.g., illumination). Various methods exist to derive perceptual scales, but in practice, scale estimation is often bypassed by assessing appearance matches. Matches, however, only reflect the underlying perceptual scales but do not reveal them directly. Two recently developed methods, MLDS (Maximum Likelihood Difference Scaling) and MLCM (Maximum Likelihood Conjoint Measurement), promise to reliably estimate perceptual scales. Here we compared both methods in their ability to estimate perceptual scales across context changes in the domain of lightness perception. In simulations, we adopted a lightness constant, a contrast, and a luminance-based observer model to generate differential patterns of perceptual scales. MLCM correctly recovered all models. MLDS correctly recovered only the lightness constant observer model. We also empirically probed both methods with two types of stimuli: (a) variegated checkerboards that support lightness constancy and (b) center-surround stimuli that do not support lightness constancy. Consistent with the simulations, MLDS and MLCM provided similar scale estimates in the first case and divergent estimates in the second. In addition, scales from MLCM-and not from MLDS-accurately predicted asymmetric matches for both types of stimuli. Taking experimental and simulation results together, MLCM seems more apt to provide a valid estimate of the perceptual scales underlying judgments of lightness across viewing conditions.


Assuntos
Sensibilidades de Contraste/fisiologia , Iluminação , Percepção Visual/fisiologia , Simulação por Computador , Humanos , Julgamento , Funções Verossimilhança , Probabilidade , Psicofísica , Reprodutibilidade dos Testes
4.
Microvasc Res ; 122: 52-59, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30414869

RESUMO

Since of its introduction in 1980s, laser speckle imaging has become a powerful tool in flow imaging. Its high performance and low cost made it one of the preferable imaging methods. Initially, speckle contrast measurements were the main algorithm for analyzing laser speckle images in biological flows. Speckle contrast measurements, also referred as Laser Speckle Contrast Imaging (LSCI), use statistical properties of speckle patterns to create mapped image of the blood vessels. In this communication, a new method named Laser Speckle Optical Flow Imaging (LSOFI) is introduced. This method uses the optical flow algorithms to calculate the apparent motion of laser speckle patterns. The differences in the apparent motion of speckle patterns are used to identify the blood vessels from surrounding tissue. LSOFI has better spatial and temporal resolution compared to LSCI. This higher spatial resolution enables LSOFI to be used for autonomous blood vessels detection. Furthermore, Graphics Processing Unit (GPU) based LSOFI can be used for quasi real time imaging.


Assuntos
Algoritmos , Interpretação de Imagem Assistida por Computador/métodos , Fluxometria por Laser-Doppler/métodos , Imagem Óptica/métodos , Crânio/irrigação sanguínea , Animais , Velocidade do Fluxo Sanguíneo , Camundongos , Modelos Cardiovasculares , Valor Preditivo dos Testes , Fluxo Sanguíneo Regional , Fatores de Tempo
5.
Lasers Surg Med ; 51(10): 920-932, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31236997

RESUMO

BACKGROUND AND OBJECTIVE: Microcirculation plays a critical role in physiologic processes and several disease states. Laser speckle imaging (LSI) is a full-field, real-time imaging technique capable of mapping microvessel networks and providing relative flow velocity within the vessels. In this study, we demonstrate that LSI combine with multispectral reflectance imaging (MSRI), which allows for distinction between veins and arteries in the vascular flow maps produced by LSI. We apply this combined technique to mouse cerebral vascular network in vivo, comparing imaging through the skull, to the dura mater and brain directly through a craniectomy, and through a transparent cranial "Window to the Brain" (WttB) implant. STUDY DESIGN/MATERIALS AND METHODS: The WttB implant used in this study is made of a nanocrystalline Yttria-Stabilized-Zirconia ceramic. MSRI was conducted using white-light illumination and filtering the reflected light for 560, 570, 580, 590, 600, and 610 nm. LSI was conducted using an 810 nm continuous wave near-infrared laser with incident power of 100 mW, and the reflected speckle pattern was captured by a complementary metal-oxide-semiconductor (CMOS) camera. RESULTS: Seven vessel branches were analyzed and comparison was made between imaging through the skull, craniectomy, and WttB implant. Through the skull, MSRI did not detect any vessels, and LSI could not image microvessels. Imaging through the WttB implant, MSRI was able to identify veins versus arteries, and LSI was able to image microvessels with only slightly higher signal-to-noise ratio and lower sharpness than imaging the brain through a craniectomy. CONCLUSIONS: This study demonstrates the ability to perform MSRI-LSI across a transparent cranial implant, to allow for cerebral vascular networks to be mapped, including microvessels. These images contain additional information such as vein-artery separation and relative blood flow velocities, information which is of value scientifically and medically. The WttB implant provides substantial improvements over imaging through the murine cranial bone, where microvessels are not visible and MSRI cannot be performed. Lasers Surg. Med. © 2019 Wiley Periodicals, Inc.


Assuntos
Encéfalo/irrigação sanguínea , Microvasos/diagnóstico por imagem , Imagem Óptica/métodos , Próteses e Implantes , Implantação de Prótese , Crânio/cirurgia , Animais , Velocidade do Fluxo Sanguíneo , Encéfalo/diagnóstico por imagem , Encéfalo/fisiologia , Cerâmica , Masculino , Camundongos , Microcirculação/fisiologia , Imagem Óptica/instrumentação , Espectroscopia de Luz Próxima ao Infravermelho , Ítrio , Zircônio
6.
J Vis ; 17(1): 37, 2017 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-28135347

RESUMO

Maximum likelihood difference scaling (MLDS) is a method for the estimation of perceptual scales based on the judgment of differences in stimulus appearance (Maloney & Yang, 2003). MLDS has recently also been used to estimate near-threshold discrimination performance (Devinck & Knoblauch, 2012). Using MLDS as a psychophysical method for sensitivity estimation is potentially appealing, because MLDS has been reported to need less data than forced-choice procedures, and particularly naive observers report to prefer suprathreshold comparisons to JND-style threshold tasks. Here we compare two methods, MLDS and two-interval forced-choice (2-IFC), regarding their capability to estimate sensitivity assuming an underlying signal-detection model. We first examined the theoretical equivalence between both methods using simulations. We found that they disagreed in their estimation only when sensitivity was low, or when one of the assumptions on which MLDS is based was violated. Furthermore, we found that the confidence intervals derived from MLDS had a low coverage; i.e., they were too narrow, underestimating the true variability. Subsequently we compared MLDS and 2-IFC empirically using a slant-from-texture task. The amount of agreement between sensitivity estimates from the two methods varied substantially across observers. We discuss possible reasons for the observed disagreements, most notably violations of the MLDS model assumptions. We conclude that in the present example MLDS and 2-IFC could equally be used to estimate sensitivity to differences in slant, with MLDS having the benefit of being more efficient and more pleasant, but having the disadvantage of unsatisfying coverage.


Assuntos
Comportamento de Escolha , Funções Verossimilhança , Reconhecimento Visual de Modelos/fisiologia , Adulto , Feminino , Humanos , Julgamento , Masculino , Probabilidade , Psicofísica , Detecção de Sinal Psicológico , Adulto Jovem
7.
J Vis ; 17(4): 1, 2017 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-28384658

RESUMO

One central problem in perception research is to understand how internal experiences are linked to physical variables. Most commonly, this relationship is measured using the method of adjustment, but this has two shortcomings: The perceptual scales that relate physical and perceptual variables are not measured directly, and the method often requires perceptual comparisons between viewing conditions. To overcome these problems, we measured perceptual scales of surface lightness using maximum likelihood difference scaling, asking observers only to compare the lightness of surfaces presented in the same context. Observers were lightness constant, and the perceptual scales qualitatively and quantitatively predicted perceptual matches obtained in a conventional adjustment experiment. Additionally, we show that a contrast-based model of lightness perception predicted 98% of the variance in the scaling and 88% in the matching data. We suggest that the predictive power was higher for scales because they are closer to the true variables of interest.


Assuntos
Sensibilidades de Contraste/fisiologia , Iluminação , Reconhecimento Visual de Modelos/fisiologia , Adulto , Feminino , Humanos , Funções Verossimilhança , Masculino , Modelos Teóricos , Mascaramento Perceptivo , Probabilidade , Psicofísica , Adulto Jovem
8.
Lasers Surg Med ; 48(8): 782-789, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27389389

RESUMO

BACKGROUND AND OBJECTIVE: The development and feasibility of a novel nanocrystalline yttria-stabilized-zirconia (nc-YSZ) cranial implant has been recently established. The purpose of what we now call "window to the brain (WttB)" implant (or platform), is to improve patient care by providing a technique for delivery and/or collection of light into/from the brain, on demand, over large areas, and on a chronically recurring basis without the need for repeated craniotomies. WttB holds the transformative potential for enhancing light-based diagnosis and treatment of a wide variety of brain pathologies including cerebral edema, traumatic brain injury, stroke, glioma, and neurodegenerative diseases. However, bacterial adhesion to the cranial implant is the leading factor for biofilm formation (fouling), infection, and treatment failure. Escherichia coli (E. coli), in particular, is the most common isolate in gram-negative bacillary meningitis after cranial surgery or trauma. The transparency of our WttB implant may provide a unique opportunity for non-invasive treatment of bacterial infection under the implant using medical lasers. STUDY DESIGN/MATERIALS AND METHODS: A drop of a diluted overnight culture of BL21-293 E. coli expressing luciferase was seeded between the nc-YSZ implant and the agar plate. This was followed by immediate irradiation with selected laser. After each laser treatment the nc-YSZ was removed, and cultures were incubated for 24 hours at 37 °C. The study examined continuous wave (CW) and pulsed wave (PW) modes of near-infrared (NIR) 810 nm laser wavelength with a power output ranging from 1 to 3 W. During irradiation, the temperature distribution of nc-YSZ surface was monitored using an infrared thermal camera. Relative luminescence unit (RLU) was used to evaluate the viability of bacteria after the NIR laser treatment. RESULTS: Analysis of RLU suggests that the viability of E. coli biofilm formation was reduced with NIR laser treatment when compared to the control group (P < 0.01) and loss of viability depends on both laser fluence and operation mode (CW or PW). The results demonstrate that while CW laser reduces the biofilm formation more than PW laser with the same power, the higher surface temperature of the implant generated by CW laser limits its medical efficacy. In contrast, with the right parameters, PW laser produces a more moderate photothermal effect which can be equally effective at controlling bacterial growth. CONCLUSIONS: Our results show that E. coli biofilm formation across the thickness of the nc-YSZ implant can be disrupted using NIR laser treatment. The results of this in vitro study suggest that using nc-YSZ as a cranial implant in vivo may also allow for locally selective, non-invasive, chronic treatment of bacterial layers (fouling) that might form under cranial implants, without causing adverse thermal damage to the underlying host tissue when appropriate laser parameters are used. Lasers Surg. Med. 48:782-789, 2016. © 2016 Wiley Periodicals, Inc.


Assuntos
Biofilmes/efeitos da radiação , Escherichia coli/efeitos da radiação , Lasers , Nanopartículas/microbiologia , Procedimentos Neurocirúrgicos/instrumentação , Próteses e Implantes/microbiologia , Ítrio , Zircônio
9.
Nanomedicine ; 12(7): 1757-1763, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27133190

RESUMO

The long-range goal of the windows to the brain (WttB) is to improve patient care by providing a technique for delivery and/or collection of light into/from the brain, on demand, over large areas, and on a chronically-recurring basis without the need for repeated craniotomies. To evaluate the potential of nanocrystalline yttria-stabilized-zirconia (nc-YSZ) cranial implant for optical therapy and imaging, in vivo biocompatibility was studied using the dorsal window chamber model in comparison with control (no implant) and commercially available cranial implant materials (PEEK and PEKK). The host tissue response to implant was characterized by using transillumination and fluorescent microscopy to measure leukocyte adhesion, blood vessel diameter, blood flow rate, and vascular permeability over two weeks. The results indicated the lack of inflammatory reaction of the host tissue to nc-YSZ at the microscopic level, suggesting that nc-YSZ is a good alternative material for cranial implants.


Assuntos
Próteses e Implantes , Crânio , Ítrio , Zircônio , Adesão Celular , Humanos , Teste de Materiais , Microscopia Eletrônica de Varredura , Nanopartículas/química , Propriedades de Superfície , Titânio
10.
Rev Gastroenterol Peru ; 36(3): 249-251, 2016.
Artigo em Espanhol | MEDLINE | ID: mdl-27716762

RESUMO

We present the case of a 34 years old female patient who presents with abdominal pain and elevated total and direct bilirrubins, so she underwent ERCP Reporting: a) successful sphincterotomy without complications, b) choledocholithias is endoscopically resolved, c) secondary cholangitis. She developed significant abdominal pain at 72 h, with hypovolemic shock and peritoneal irritation. She was taken to the surgery, finding a grade III liver laceration. This one was resolved with liver raffia and packing, during the same operative time cholecystectomy was performed. A second look was performed at 24 h, achieving adequate control of bleeding after placing hemostatic (Nexstat®). The patient developed a subdiaphragmatic abscess which needed drainage by another laparotomy. After which the patient had a satisfactory evolution, so she was discharged.


Assuntos
Colangiopancreatografia Retrógrada Endoscópica , Coledocolitíase/cirurgia , Hepatopatias/diagnóstico , Complicações Pós-Operatórias/diagnóstico , Esfinterotomia Endoscópica , Adulto , Feminino , Humanos , Hepatopatias/etiologia , Ruptura Espontânea
11.
Appl Opt ; 54(35): 10432-7, 2015 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-26836867

RESUMO

A single laser-induced cavitation bubble in transparent liquids has been studied through a variety of experimental techniques. High-speed video with varying frame rate up to 20×10(7) fps is the most suitable to study nonsymmetric bubbles. However, it is still expensive for most researchers and more affordable (lower) frame rates are not enough to completely reproduce bubble dynamics. This paper focuses on combining the spatial transmittance modulation (STM) technique, a single shot cavitation bubble and a very simple and inexpensive experimental technique, based on Fresnel approximation propagation theory, to reproduce a laser-induced cavitation spatial dynamics. Our results show that the proposed methodology reproduces a laser-induced cavitation event much more accurately than 75,000 fps video recording. In conclusion, we propose a novel methodology to reproduce laser-induced cavitation events that combine the STM technique with Fresnel propagation approximation theory that properly reproduces a laser-induced cavitation event including a very precise identification of the first, second, and third collapses of the cavitation bubble.

12.
Lasers Surg Med ; 46(6): 488-98, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24863481

RESUMO

BACKGROUND AND OBJECTIVE: Optical clearing agents (OCAs) have shown promise for increasing the penetration depth of biomedical lasers by temporarily decreasing optical scattering within the skin. However, their translation to the clinic has been constrained by lack of practical means for effectively perfusing OCA within target tissues in vivo. The objective of this study was to address this limitation through combination of a variety of techniques to enhance OCA perfusion, including heating of OCA, microneedling and/or application of pneumatic pressure over the skin surface being treated (vacuum and/or positive pressure). While some of these techniques have been explored by others independently, the current study represents the first to explore their use together. STUDY DESIGN/MATERIALS AND METHODS: Propylene glycol (PG) OCA, either at room-temperature or heated to 45°C, was topically applied to hydrated, body temperature ex vivo porcine skin, in conjunction with various combinations of microneedling pre-treatment (0.2 mm length microneedles, performed prior to OCA application), vacuum pre-treatment (17-50 kPa, performed prior to OCA application), and positive pressure post-treatment (35-172 kPa, performed after OCA application). The effectiveness of OCA perfusion was characterized via measurements of transmittance, reduced scattering coefficient, and penetration depth at a number of medically-relevant laser wavelengths across the visible spectrum. RESULTS: Topical application of room-temperature (RT) PG led to an increase in transmittance across the visible spectrum of up to 21% relative to untreated skin. However, only modest increases were observed with addition of various combinations of microneedling pre-treatment, vacuum pre-treatment, and positive pressure post-treatment. Conversely, when heated PG was used in conjunction with these techniques, we observed significant increases in transmittance. Using an optimal PG perfusion enhancement protocol consisting of 45°C heated PG + microneedle pre-treatment + 35 kPa vacuum pre-treatment + 103 kPa positive pressure post-treatment, we observed up to 68% increase in transmittance relative to untreated skin, and up to 46% increase relative to topical RT PG application alone. Using the optimal PG perfusion enhancement protocol, we also observed up to 30% decrease in reduced scattering coefficient relative to untreated skin, and up to 20% decrease relative to topical RT PG alone. Finally, using the optimal protocol, we observed up to 25% increase in penetration depth relative to untreated skin, and up to 23% increase relative to topical RT PG alone. CONCLUSIONS: The combination of heated PG, microneedling pre-treatment, vacuum pre-treatment, and positive pressure-post treatment were observed to significantly enhance the perfusion of topically applied PG. Although further studies are required to evaluate the efficacy of combined perfusion enhancement techniques in vivo, the current results suggest promise for facilitating the translation of OCAs to the clinic.


Assuntos
Fármacos Dermatológicos/administração & dosagem , Lasers , Propilenoglicol/administração & dosagem , Pele/efeitos dos fármacos , Administração Cutânea , Animais , Temperatura Alta , Agulhas , Pressão , Pele/efeitos da radiação , Absorção Cutânea , Suínos , Vácuo
13.
Nanomedicine ; 9(8): 1135-8, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23969102

RESUMO

Laser-based diagnostics and therapeutics show promise for many neurological disorders. However, the poor transparency of cranial bone (calvaria) limits the spatial resolution and interaction depth that can be achieved, thus constraining opportunity in this regard. Herein, we report preliminary results from efforts seeking to address this limitation through use of novel transparent cranial implants made from nanocrystalline yttria-stabilized zirconia (nc-YSZ). Using optical coherence tomography (OCT) imaging of underlying brain in an acute murine model, we show that signal strength is improved when imaging through nc-YSZ implants relative to native cranium. As such, this provides initial evidence supporting the feasibility of nc-YSZ as a transparent cranial implant material. Furthermore, it represents a crucial first step towards realization of an innovative new concept we are developing, which seeks to eventually provide a clinically-viable means for optically accessing the brain, on-demand, over large areas, and on a chronically-recurring basis, without need for repeated craniectomies. FROM THE CLINICAL EDITOR: In this study, transparent nanocrystalline yttria-stabilized-zirconia is used as an experimental "cranium prosthesis" material, enabling the replacement of segments of cranial bone with a material that allows for optical access to the brain on a recurrent basis using optical imaging methods such as OCT.


Assuntos
Substitutos Ósseos/química , Nanopartículas/química , Próteses e Implantes , Crânio/cirurgia , Ítrio/química , Zircônio/química , Animais , Luz , Camundongos , Imagem Óptica , Crânio/anatomia & histologia
14.
ArXiv ; 2023 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-37873008

RESUMO

Characterizing judgments of similarity within a perceptual or semantic domain, and making inferences about the underlying structure of this domain from these judgments, has an increasingly important role in cognitive and systems neuroscience. We present a new framework for this purpose that makes very limited assumptions about how perceptual distances are converted into similarity judgments. The approach starts from a dataset of empirical judgments of relative similarities: the fraction of times that a subject chooses one of two comparison stimuli to be more similar to a reference stimulus. These empirical judgments provide Bayesian estimates of underling choice probabilities. From these estimates, we derive three indices that characterize the set of judgments, measuring consistency with a symmetric dis-similarity, consistency with an ultrametric space, and consistency with an additive tree. We illustrate this approach with example psychophysical datasets of dis-similarity judgments in several visual domains and provide code that implements the analyses.

15.
J Am Acad Dermatol ; 67(2): 289-304, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22305042

RESUMO

Port wine stains (PWS) are the most common vascular malformation of the skin, occurring in 0.3% to 0.5% of the population. Noninvasive laser irradiation with flashlamp-pumped pulsed dye lasers (selective photothermolysis) currently comprises the gold standard treatment of PWS; however, the majority of PWS fail to clear completely after selective photothermolysis. In this review, the clinically used PWS treatment modalities (pulsed dye lasers, alexandrite lasers, neodymium:yttrium-aluminum-garnet lasers, and intense pulsed light) and techniques (combination approaches, multiple passes, and epidermal cooling) are discussed. Retrospective analysis of clinical studies published between 1990 and 2011 was performed to determine therapeutic efficacies for each clinically used modality/technique. In addition, factors that have resulted in the high degree of therapeutic recalcitrance are identified, and emerging experimental treatment strategies are addressed, including the use of photodynamic therapy, immunomodulators, angiogenesis inhibitors, hypobaric pressure, and site-specific pharmaco-laser therapy.


Assuntos
Inibidores da Angiogênese/uso terapêutico , Imunossupressores/uso terapêutico , Terapia com Luz de Baixa Intensidade/métodos , Mancha Vinho do Porto/tratamento farmacológico , Mancha Vinho do Porto/radioterapia , Humanos , Terapia com Luz de Baixa Intensidade/instrumentação
16.
Sci Rep ; 12(1): 20379, 2022 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-36437305

RESUMO

The effect of gas-entrapping polydimethylsiloxane (PDMS) microstructures on the dynamics of cavitation bubbles laser-induced next to the PDMS surface is investigated and compared against the cavitation dynamics next to a flat smooth boundary. Local pressure gradients produced by a cavitation bubble cause the air pockets entrapped in the PDMS microstructures to expand and oscillate, leading to a repulsion of the cavitation bubble. The microstructures were fabricated as boxed crevices via a simple and scalable laser ablation technique on cast acrylic, allowing for testing of variable structure sizes and reusable molds. The bubble dynamics were observed using high speed photography and the surrounding flows were visualized and quantified using particle tracking velocimetry. Smaller entrapped air pockets showed an enhanced ability to withstand deactivation at three stand-off distances and over 50 subsequent cavitation events. This investigation provides insight into the potential to direct the collapse of a cavitation bubble away from a surface to mitigate erosion or to enhance microfluidic mixing in low Reynolds number flows.

17.
Comput Methods Programs Biomed ; 221: 106896, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35617809

RESUMO

BACKGROUND AND OBJECTIVE: In the last few years, we have been exploring the use of transparent nanocrystalline yttria-stabilized zirconia (nc-YSZ) ceramics as a biomedical transparent cranial implant, referred as the "Window to the Brain" (WttB). The WttB aims at providing chronical optical access to the brain for diagnostics and therapeutic procedures and it has shown to provide an effective means to obtain enhanced results from optical imaging techniques. The objective of this work is to explore the photothermal effects of the Wttb produced when it is irradiated by a laser source. METHODS: We make experimental and computer models. The thermal effects of laser irradiation on the nc-YSZ samples were evaluated upon registering the induced temperature changes by means of thermal imaging. The computer models try to mimic the experimental models using a similar geometry, reproducing the physical situation by a couple thermal-optical problem and adjusting the main parameters from the experimental results. RESULTS: Experimental and computational coincides in results: Temperatures at the bottom surface of the implant does not exceed those which produce thermal damage. The quantitative comparison between experimental and computational models show that differences in results are under a reasonable value of 5% and qualitatively we observe a similar behavior. The results provide optimum values for the thermal-optical nc-YSZ parameters considering a linear and exponential relationship with temperature for the absorption coefficient: The thermal conductivity is k = 2.13 W/m·K and the absorption coefficient α varies from 426 to 526 m-1 with the linear relationship, and k = 2.04 W/m·K and α ∈ [433,502] m-1 with the exponential. The reflection coefficient is R = 19% in both cases. CONCLUSIONS: The temperatures achieved in the nc-YSZ during the laser irradiation are suitable for biomedical applications. The combination of experimental and computational models contributes to build a clinically oriented model with the thermal-optical parameters values stablished and to determine their influence in results. Specifically, the absorption coefficient of the nc-YSZ samples is the most influent parameter in the obtained temperatures. Moreover, this combination provides a method to evaluate the relevant thermal-optical parameters of nc-YSZ samples obtained with different manufacturing processes.


Assuntos
Ítrio , Zircônio , Simulação por Computador , Ítrio/química , Zircônio/química
18.
Front Bioeng Biotechnol ; 10: 957481, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36091458

RESUMO

Titanium nitride (TiN) is presented as an alternative plasmonic nanomaterial to the commonly used gold (Au) for its potential use in laser rewarming of cryopreserved biomaterials. The rewarming of vitrified, glass like state, cryopreserved biomaterials is a delicate process as potential ice formation leads to mechanical stress and cracking on a macroscale, and damage to cell walls and DNA on a microscale, ultimately leading to the destruction of the biomaterial. The use of plasmonic nanomaterials dispersed in cryoprotective agent solutions to rapidly convert optical radiation into heat, generally supplied by a focused laser beam, proposes a novel approach to overcome this difficulty. This study focuses on the performance of TiN nanoparticles (NPs), since they present high thermal stability and are inexpensive compared to Au. To uniformly warm up the nanomaterial solutions, a beam splitting laser system was developed to heat samples from multiple sides with equal beam energy distribution. In addition, uniform laser warming requires equal distribution of absorption and scattering properties in the nanomaterials. Preliminary results demonstrated higher absorption but less scattering in TiN NPs than Au nanorods (GNRs). This led to the development of TiN clusters, synthetized by nanoparticle agglomeration, to increase the scattering cross-section of the material. Overall, this study analyzed the heating rate, thermal efficiency, and heating uniformity of TiN NPs and clusters in comparison to GNRs at different solution concentrations. TiN NPs and clusters demonstrated higher heating rates and solution temperatures, while only clusters led to a significantly improved uniformity in heating. These results highlight a promising alternative plasmonic nanomaterial to rewarm cryopreserved biological systems in the future.

19.
ACS Appl Bio Mater ; 5(6): 2664-2675, 2022 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-35671525

RESUMO

Transparent yttria-stabilized zirconia (YSZ) ceramics are promising for cranial window applications because of their good mechanical and optical properties as well as biocompatibility. YSZ discs with different yttria concentrations were either processed via current-activated pressure-assisted densification (CAPAD) using commercial nanoparticles or densified via spark plasma sintering (SPS) using pyrolysis-synthesized nanoparticles in-house. This study provided critical results to screen composition, processing, microstructure, and cytocompatibility of transparent YSZ discs for cranial window applications. CAPAD-processed YSZ discs with 6 or 8 mol % yttria (6YSZ and 8YSZ) and SPS-densified YSZ discs with 4 mol % yttria (4YSZ_P) showed 200-350 nm polycrystalline grains containing 20-30 nm crystallite domains. SPS-densified YSZ discs with 8 mol % yttria (8YSZ_P) showed larger polycrystalline grains of 819 ± 155 nm with 29 ± 5 nm crystallite domains. CAPAD-processed YSZ discs with 3 mol % yttria (3YSZ) showed 39 ± 9 nm grains. Bone-marrow-derived stem cells (BMSCs) on the polished YSZ discs showed statistically higher spreading areas than those on the unpolished YSZ discs of the same compositions. Generally, polished 8YSZ, 4YSZ_P, and 8YSZ_P discs and unpolished 8YSZ_R, 4YSZ_PR, and 8YSZ_PR discs had lower average cell adhesion densities than other YSZ discs under direct contact conditions. Under indirect contact conditions, all the YSZ disc groups showed similar average cell adhesion densities to the Cell-only control. The groups of polished 4YSZ_P and 8YSZ_P discs, unpolished 4YSZ_PR and 8YSZ_PR discs, and particle control of 8YSZ_Pnp showed higher Y3+ ion concentrations than other groups. No mineral deposition was detected on the polished YSZ discs after cell culture. Considering multiple factors such as cytocompatibility, cell adhesion density, Y3+ ion release, mineral deposition, and optical transparency collectively, 8YSZ may be the best candidate for the cranial window applications. Further studies are needed to evaluate the long-term transparency and biocompatibility of YSZ discs.


Assuntos
Ítrio , Zircônio , Cerâmica , Ítrio/química , Zircônio/química
20.
J Biomed Mater Res A ; 109(12): 2483-2492, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34096159

RESUMO

In this work, we present an extensive comparative study between novel titanium nitride nanoparticles (TiN NPs) and commercial gold nanorods (GNR), both dispersed in water and exposed to a pulsed laser-induced cavitation process. The optical density, shockwave emission, and bubble formation of these solutions were investigated using shadowgraphy, spatial transmittance modulation, and acoustic measurements. TiN nanoparticle solutions exhibited high stability undser a periodic nanosecond pulsed-laser irradiation, making these nanomaterials promising agents for high-power applications. In addition, they demonstrated a stronger nonlinear absorption compared to the GNR solutions, and plasma formation at lower laser energies. This study advances our understanding of the optical properties of TiN and discusses significant differences compared to gold, with important implications for future applications of this material in water treatment, nonlinear signal converting, and laser-induced cavitation for medical implementations, among others.


Assuntos
Ouro/química , Lasers , Nanopartículas Metálicas , Nanotubos/química , Titânio/química , Microscopia Eletrônica de Varredura , Dinâmica não Linear , Tamanho da Partícula , Soluções , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA