Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Environ Res ; 216(Pt 4): 114772, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36379235

RESUMO

In this work nanocomposites based on alginate (Alg) and halloysite as a nanotubular clay (Hy) were developed. Characterization techniques reveal that Hy/Alg nanocomposites are cation exchangers with predominantly negative charge density and good thermal stability. The adsorption equilibrium of Cd(II) in aqueous solution onto Hy/Alg nanocomposites revealed that by increasing the mass of halloysite in the nanocomposite, the adsorption capacity diminished significantly due to the halloysite-alginate interactions. Maximum adsorption capacities of 8, 65, 88, and 132 mg/g of Cd(II) were obtained for samples Hy, Hy/Alg 50%, Hy/Alg 95%, and Alg, respectively. In addition, the adsorption equilibrium of Cd(II) on the Hy/Alg bionanocomposites was affected by the pH and temperature of the solution, demonstrating the presence of electrostatic interactions during adsorption and that this is an exothermic process. The controlling mechanism of adsorption was cation exchange influenced by electrostatic forces. The Cd(II) adsorption rate studies were interpreted by the diffusion-permeation model and reveal that the presence of Hy in the structure of the nanocomposites enhances the permeation coefficient, that is, the adsorption rate was increased. The values of the permeation coefficient varied from 1.95 × 10-7 to 8.50 × 10-7 cm2/s for Hy/Alg 50% and from 1.70 × 10-7 to 3.55 × 10-7 cm2/s for Hy/Alg 95%.


Assuntos
Alginatos , Nanocompostos , Argila/química , Adsorção , Alginatos/química , Cádmio , Minerais , Cinética , Concentração de Íons de Hidrogênio
2.
Environ Res ; 217: 114852, 2023 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-36457238

RESUMO

Metformin consumption for diabetes treatment is increasing, leading to its presence in wastewater treatment plants where conventional methods cannot remove it. Therefore, this work aims to analyze the performance of advanced oxidation processes using sulfate radicals in the degradation of metformin from water. Experiments were performed in a photoreactor provided with a low-pressure Hg lamp, using K2S2O8 as oxidant and varying the initial metformin concentration (CA0), oxidant concentration (Cox), temperature (T), and pH in a response surface experimental design. The degradation percentages ranged from 26.1 to 87.3%, while the mineralization percentages varied between 15.1 and 64%. Analysis of variance (ANOVA) showed that the output variables were more significantly affected by CA0, Cox, and T. Besides, a reduction of CA0 and an increase of Cox up to 5000 µM maximizes the metformin degradation since the generation of radicals and their interaction with metformin molecules are favored. For the greatest degradation percentage, the first order apparent rate constant achieved was 0.084 min-1. Furthermore, while in acidic pH, temperature benefits metformin degradation, an opposite behavior is obtained in a basic medium because of recombination and inhibition reactions. Moreover, three degradation pathways were suggested based on the six products detected by HPLC-MS: N-cyanoguanidine m/z = 85; N,N-dimethylurea m/z = 89; N,N-dimethyl-cyanamide m/z = 71 N,N-dimethyl-formamide m/z = 74; glicolonitrilo m/z = 58; and guanidine m/z = 60. Finally, it was shown that in general the toxicity of the degradation byproducts was lower than the toxicity of metformin toward Chlamydomonas reinhardtii.


Assuntos
Metformina , Poluentes Químicos da Água , Poluentes Químicos da Água/análise , Oxidantes , Sulfatos/química , Oxirredução , Água , Raios Ultravioleta , Cinética
3.
Environ Res ; 231(Pt 3): 116280, 2023 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-37257742

RESUMO

This work presents a one-step synthesis methodology for preparing a hydrochar (HC) doped with TiO2 (HC-TiO2) for its application on the degradation of crystal violet (CV) using UV and visible radiation. Byrsonima crassifolia stones were used as precursors along with TiO2 particles. The HC-TiO2 sample was synthesized at 210 °C for 9 h using autogenous pressure. The photocatalyst was characterized to evaluate the TiO2 dispersion, specific surface area, graphitization degree, and band-gap value. Finally, the degradation of CV was investigated by varying the operating conditions of the system, the reuse of the catalyst, and the degradation mechanism. The physicochemical characterization of the HC-TiO2 composite showed good dispersion of TiO2 in the carbonaceous particle. The presence of TiO2 on the hydrochar surface yields a bandgap value of 1.17 eV, enhancing photocatalyst activation with visible radiation. The degradation results evidenced a synergistic effect with both types of radiation due to the hybridized π electrons in the sp2-hybridized structures in the HC surface. The degradation percentages were on average 20% higher using UV radiation than visible radiation under the following conditions: [CV] = 20 mg/L, 1 g/L of photocatalyst load, and pH = 7.0. The reusability experiments demonstrated the feasibility of reusing the HC-TiO2 material up to 5 times with a similar photodegradation percentage. Finally, the results indicated that the HC-TiO2 composite could be considered an efficient material for the photocatalytic treatment of water contaminated with CV.


Assuntos
Violeta Genciana , Raios Ultravioleta , Luz , Titânio/química , Catálise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA