Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Antibiotics (Basel) ; 12(3)2023 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-36978400

RESUMO

Nanotechnology is a developing field that has boomed in recent years due to the multiple qualities of nanoparticles (NPs), one of which is their antimicrobial capacity. We propose that NPs anchored with 2-(dimethylamino)ethyl methacrylate (DMAEMA) have antibacterial properties and could constitute an alternative tool in this field. To this end, the antimicrobial effects of three quaternised NPs anchored with DMAEMA were studied. These NPs were later copolymerized using different methylmethacrylate (MMA) concentrations to evaluate their role in the antibacterial activity shown by NPs. Clinical strains of Staphylococcus aureus, S. epidermidis, S. lugdunensis and Enterococcus faecalis were used to assess antibacterial activity. The minimal inhibitory concentration (MIC) was determined at the different concentrations of NPs to appraise antibacterial activity. The cytotoxic effects of the NPs anchored with DMAEMA were determined in NIH3T3 mouse fibroblast cultures by MTT assays. All the employed NPs were effective against the studied bacterial strains, although increasing concentrations of the MMA added during the synthesis process diminished these effects without altering toxicity in cell cultures. To conclude, more studies with other copolymers are necessary to improve the antibacterial effects of NPs anchored with DMAEMA.

2.
Front Cell Infect Microbiol ; 13: 1100947, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37051297

RESUMO

Staphylococcus aureus is one of the species with the greatest clinical importance and greatest impact on public health. In fact, methicillin-resistant S. aureus (MRSA) is considered a pandemic pathogen, being essential to develop effective medicines and combat its rapid spread. This study aimed to foster the translation of clinical research outcomes based on metallodrugs into clinical practice for the treatment of MRSA. Bearing in mind the promising anti-Gram-positive effect of the heteroscorpionate ligand 1,1'-(2-(4-isopropylphenyl)ethane-1,1-diyl)bis(3,5-dimethyl-1H-pyrazole) (2P), we propose the coordination of this compound to platinum as a clinical strategy with the ultimate aim of overcoming resistance in the treatment of MRSA. Therefore, the novel metallodrug 2P-Pt were synthetized, fully characterized and its antibacterial effect against the planktonic and biofilm state of S. aureus evaluated. In this sense, three different strains of S. aureus were studied, one collection strain of S. aureus sensitive to methicillin and two clinical MRSA strains. To appraise the antibacterial activity, minimum inhibitory concentration (MIC), minimum bactericidal concentration (MBC), minimum biofilm inhibitory concentration (MBIC), and minimum biofilm eradication concentration (MBEC) were determined. Moreover, successful outcomes on the development of biofilm in a wound-like medium were obtained. The mechanism of action for 2P-Pt was proposed by measuring the MIC and MBC with EDTA (cation mediated mechanism) and DMSO (exogenous oxidative stress mechanism). Moreover, to shed light on the plausible antistaphylococcal mechanism of this novel platinum agent, additional experiments using transmission electron microscopy were carried out. 2P-Pt inhibited the growth and eradicated the three strains evaluated in the planktonic state. Another point worth stressing is the inhibition in the growth of MRSA biofilm even in a wounded medium. The results of this work support this novel agent as a promising therapeutic alternative for preventing infections caused by MRSA.


Assuntos
Staphylococcus aureus Resistente à Meticilina , Staphylococcus aureus , Platina/farmacologia , Antibacterianos/farmacologia , Meticilina/farmacologia , Testes de Sensibilidade Microbiana , Biofilmes
3.
Materials (Basel) ; 15(14)2022 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-35888219

RESUMO

Infection is one of the most common causes that leads to joint prosthesis failure. In the present work, biodegradable sol-gel coatings were investigated as a promising controlled release of antibiotics for the local prevention of infection in joint prostheses. Accordingly, a sol-gel formulation was designed to be tested as a carrier for 8 different individually loaded antimicrobials. Sols were prepared from a mixture of MAPTMS and TMOS silanes, tris(tri-methylsilyl)phosphite, and the corresponding antimicrobial. In order to study the cross-linking and surface of the coatings, a battery of examinations (Fourier-transform infrared spectroscopy, solid-state 29Si-NMR spectroscopy, thermogravimetric analysis, SEM, EDS, AFM, and water contact angle, thickness, and roughness measurements) were conducted on the formulations loaded with Cefoxitin and Linezolid. A formulation loaded with both antibiotics was also explored. Results showed that the coatings had a microscale roughness attributed to the accumulation of antibiotics and organophosphites in the surface protrusions and that the existence of chemical bonds between antibiotics and the siloxane network was not evidenced.

4.
Laryngoscope Investig Otolaryngol ; 7(1): 283-290, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35155809

RESUMO

OBJECTIVE: The purpose of this study was to evaluate the in vitro antibacterial effects of a p-Cymene-based bis(pyrazolyl)methane derivative (SC-19) to advance in developing alternative therapeutic compounds to fight against bacterial isolates from patients with otitis externa (OE). METHODS: Eighteen swab specimens were collected from patients aged over 18 years diagnosed with OE within at least 7 days of symptom onset, contaminated by only one bacterium type: Pseudomonas aeruginosa (n = 5); Staphylococcus aureus (n = 8); Klebsiella aerogenes (n = 2); Serratia marcescens (n = 1); Morganella morganii (n = 2). To appraise antibacterial activity, minimal inhibitory concentration (MIC), minimal bactericidal concentration (MBC), minimum biofilm inhibitory concentration (MBIC), and minimum biofilm eradication concentration (MBEC) assays were run at different SC-19 concentrations. RESULTS: When using SC-19, S. aureus strains showed less bacterial growth, but no bactericidal effect was observed. The MIC and MBC of SC-19 were 62.5 and 2000 µg/ml against S. aureus and were >2000 µg/ml against the other isolates obtained from OE, respectively. In addition, the MBICs and MBECs of SC-19 against S. aureus were 125 and >2000 µg/ml, respectively. CONCLUSION: Nowadays the acquired antibiotic resistance phenomenon has stimulated research into novel and more efficient therapeutic agents. Hence, we report that, helped by the structural diversity fostered herein by a range of bis(pyrazolyl)methane derivatives, SC-19 can be a promising alternative therapeutic option for treating OE caused by S. aureus given the observed effects on both planktonic state and biofilm. LEVEL OF EVIDENCE: IV.

5.
Antibiotics (Basel) ; 10(10)2021 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-34680850

RESUMO

Prosthetic joint infection (PJI) is the second most common cause of arthroplasty failure. Though infrequent, it is one of the most devastating complications since it is associated with great personal cost for the patient and a high economic burden for health systems. Due to the high number of patients that will eventually receive a prosthesis, PJI incidence is increasing exponentially. As these infections are provoked by microorganisms, mainly bacteria, and as such can develop a biofilm, which is in turn resistant to both antibiotics and the immune system, prevention is the ideal approach. However, conventional preventative strategies seem to have reached their limit. Novel prevention strategies fall within two broad categories: (1) antibiotic- and (2) heavy metal-based surface modifications of titanium alloy prostheses. This review examines research on the most relevant titanium alloy surface modifications that use antibiotics to locally prevent primary PJI.

6.
Sci Rep ; 11(1): 16306, 2021 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-34381091

RESUMO

This study was designed to propose alternative therapeutic compounds to fight against bacterial pathogens. Thus, a library of nitrogen-based compounds bis(triazolyl)methane (1T-7T) and bis(pyrazolyl)methane (1P-11P) was synthesised following previously reported methodologies and their antibacterial activity was tested using the collection strains of Staphylococcus aureus, Enterococcus faecalis, Escherichia coli, and Pseudomonas aeruginosa. Moreover, the novel compound 2P was fully characterized by IR, UV-Vis and NMR spectroscopy. To evaluate antibacterial activity, minimal inhibitory concentrations (MICs), minimal bactericidal concentrations (MBCs), minimum biofilm inhibitory concentrations (MBICs), and minimum biofilm eradication concentrations (MBECs) assays were carried out at different concentrations (2-2000 µg/mL). The MTT assay and Resazurin viability assays were performed in both human liver carcinoma HepG2 and human colorectal adenocarcinoma Caco-2 cell lines at 48 h. Of all the synthesised compounds, 2P had an inhibitory effect on Gram-positive strains, especially against S. aureus. The MIC and MBC of 2P were 62.5 and 2000 µg/mL against S. aureus, and 250 and 2000 µg/mL against E. faecalis, respectively. However, these values were > 2000 µg/mL against E. coli and P. aeruginosa. In addition, the MBICs and MBECs of 2P against S. aureus were 125 and > 2000 µg/mL, respectively, whereas these values were > 2000 µg/mL against E. faecalis, E. coli, and P. aeruginosa. On the other hand, concentrations up to 250 µg/mL of 2P were non-toxic doses for eukaryotic cell cultures. Thus, according to the obtained results, the 2P nitrogen-based compound showed a promising anti-Gram-positive effect (especially against S. aureus) both on planktonic state and biofilm, at non-toxic concentrations.


Assuntos
Antibacterianos/farmacologia , Bactérias Gram-Positivas/efeitos dos fármacos , Metano/farmacologia , Biofilmes/efeitos dos fármacos , Células CACO-2 , Linhagem Celular Tumoral , Células Hep G2 , Humanos , Testes de Sensibilidade Microbiana/métodos
7.
J Orthop Res ; 38(3): 588-597, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31608498

RESUMO

Prosthetic joint infection (PJI) is one of the most devastating complications in orthopedic surgery. One approach used to prevent PJI is local antibiotic therapy. This study evaluates the antibiotic release, in vitro cytocompatibility and in vivo effectiveness in preventing PJI caused by Staphylococcus aureus (S. aureus) of the fluorine- and phosphorus-doped, bottle-shaped, nanostructured (bNT) Ti-6Al-4V alloy loaded with a mixture of gentamicin and vancomycin (GV). We evaluated bNT Ti-6Al-4V loading with a mixture of GV, measuring the release of these antibiotics using high-performance liquid chromatography. Further, we describe bNT Ti-6Al-4V GV cytocompatibility and its efficacy against S. aureus using an in vivo rabbit model. GV was released from bNT Ti-6Al-4V following a Boltzmann non-linear model and maximum release values were obtained at 240 min for both antibiotics. The cell proliferation of MCT3T3-E1 osteoblastic cells significantly increased at 48 (28%) and 168 h (68%), as did the matrix mineralization (52%) of these cells and the gene expression of three of the most important markers related to bone differentiation (more than threefold for VEGF and BGLAP, and 65% for RunX) on bNT Ti-6Al-4V GV compared with control. In vivo study results show that bNT Ti-6Al-4V GV can prevent S. aureus PJI according to histopathological and microbiological results. According to our results, bNT Ti-6Al-4V loaded with a mixture of GV using the soaking method is a promising biomaterial with favorable cytocompatibility and osteointegration, demonstrating local bactericidal properties against S. aureus. © 2019 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 38:588-597, 2020.


Assuntos
Gentamicinas/administração & dosagem , Próteses e Implantes , Infecções Relacionadas à Prótese/prevenção & controle , Infecções Estafilocócicas/prevenção & controle , Titânio/química , Vancomicina/administração & dosagem , Células 3T3 , Ligas , Animais , Antibacterianos/administração & dosagem , Diferenciação Celular , Proliferação de Células , Portadores de Fármacos , Flúor/farmacologia , Masculino , Camundongos , Nanopartículas/química , Osseointegração , Fósforo/farmacologia , Coelhos , Staphylococcus aureus/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA