Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 109
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Nano Lett ; 24(12): 3590-3597, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38489112

RESUMO

The deuteration of organic molecules is considerably important in organic and medicinal chemistry. An electrochemical membrane reactor using proton-conducting graphene oxide (GO) nanosheets was developed to synthesize valuable deuterium-labeled products via an efficient hydrogen-to-deuterium (H/D) exchange under mild conditions at ambient temperature and atmospheric pressure. Deuterons (D+) formed by the anodic oxidation of heavy water (D2O) at the Pt/C anode permeate through the GO membrane to the Pt/C cathode, where organic molecules with functional groups (C≡C and C═O) are deuterated with adsorbed atomic D species. Deuteration occurs in outstanding yields with high levels of D incorporation. We also achieved the electrodeuteration of a drug molecule, ibuprofen, demonstrating the promising feasibility of the GO membrane reactor in the pharmaceutical industry.

2.
Nano Lett ; 24(18): 5395-5402, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38684070

RESUMO

We investigated the role of ligand clustering and density in the activation of natural killer (NK) cells. To that end, we designed reductionist arrays of nanopatterned ligands arranged with different cluster geometries and densities and probed their effects on NK cell activation. We used these arrays as an artificial microenvironment for the stimulation of NK cells and studied the effect of the array geometry on the NK cell immune response. We found that ligand density significantly regulated NK cell activation while ligand clustering had an impact only at a specific density threshold. We also rationalized these findings by introducing a theoretical membrane fluctuation model that considers biomechanical feedback between ligand-receptor bonds and the cell membrane. These findings provide important insight into NK cell mechanobiology, which is fundamentally important and essential for designing immunotherapeutic strategies targeting cancer.


Assuntos
Membrana Celular , Células Matadoras Naturais , Células Matadoras Naturais/imunologia , Membrana Celular/química , Membrana Celular/metabolismo , Humanos , Ligantes , Ativação Linfocitária , Fenômenos Biomecânicos , Modelos Biológicos
3.
J Proteome Res ; 23(2): 809-821, 2024 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-38230637

RESUMO

The rising prevalence of obesity in Saudi Arabia is a major contributor to the nation's high levels of cardiometabolic diseases such as type 2 diabetes. To assess the impact of obesity on the diabetic metabolic phenotype presented in young Saudi Arabian adults, participants (n = 289, aged 18-40 years) were recruited and stratified into four groups: healthy weight (BMI 18.5-24.99 kg/m2) with (n = 57) and without diabetes (n = 58) or overweight/obese (BMI > 24.99 kg/m2) with (n = 102) and without diabetes (n = 72). Distinct plasma metabolic phenotypes associated with high BMI and diabetes were identified using nuclear magnetic resonance spectroscopy and ultraperformance liquid chromatography mass spectrometry. Increased plasma glucose and dysregulated lipoproteins were characteristics of obesity in individuals with and without diabetes, but the obesity-associated lipoprotein phenotype was partially masked in individuals with diabetes. Although there was little difference between diabetics and nondiabetics in the global plasma LDL cholesterol and phospholipid concentration, the distribution of lipoprotein particles was altered in diabetics with a shift toward denser and more atherogenic LDL5 and LDL6 particles, which was amplified in the presence of obesity. Further investigation is warranted in larger Middle Eastern populations to explore the dysregulation of metabolism driven by interactions between obesity and diabetes in young adults.


Assuntos
Diabetes Mellitus Tipo 2 , Adulto Jovem , Humanos , Arábia Saudita/epidemiologia , Índice de Massa Corporal , Obesidade/complicações , Obesidade/metabolismo , Lipoproteínas
4.
Funct Integr Genomics ; 24(2): 34, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38365972

RESUMO

Malnutrition, often termed "hidden hunger," represents a pervasive global issue carrying significant implications for health, development, and socioeconomic conditions. Addressing the challenge of inadequate essential nutrients, despite sufficient caloric intake, is crucial. Biofortification emerges as a promising solution by enhance the presence of vital nutrients like iron, zinc, iodine, and vitamin A in edible parts of different crop plants. Crop biofortification can be attained through either agronomic methods or genetic breeding techniques. Agronomic strategies for biofortification encompass the application of mineral fertilizers through foliar or soil methods, as well as leveraging microbe-mediated mechanisms to enhance nutrient uptake. On the other hand, genetic biofortification involves the strategic crossing of plants to achieve a desired combination of genes, promoting balanced nutrient uptake and bioavailability. Additionally, genetic biofortification encompasses innovative methods such as speed breeding, transgenic approaches, genome editing techniques, and integrated omics approaches. These diverse strategies collectively contribute to enhancing the nutritional profile of crops. This review highlights the above-said genetic biofortification strategies and it also covers the aspect of reduction in antinutritional components in food through genetic biofortification.


Assuntos
Biofortificação , Fome , Biofortificação/métodos , Melhoramento Vegetal , Produtos Agrícolas/genética , Solo
5.
BMC Plant Biol ; 24(1): 611, 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38926637

RESUMO

Canola, a vital oilseed crop, is grown globally for food and biodiesel. With the enormous demand for growing various crops, the utilization of agriculturally marginal lands is emerging as an attractive alternative, including brackish-saline transitional lands. Salinity is a major abiotic stress limiting growth and productivity of most crops, and causing food insecurity. Salicylic acid (SA), a small-molecule phenolic compound, is an essential plant defense phytohormone that promotes immunity against pathogens. Recently, several studies have reported that SA was able to improve plant resilience to withstand high salinity. For this purpose, a pot experiment was carried out to ameliorate the negative effects of sodium chloride (NaCl) on canola plants through foliar application of SA. Two canola varieties Faisal (V1) and Super (V2) were assessed for their growth performance during exposure to high salinity i.e. 0 mM NaCl (control) and 200 mM NaCl. Three levels of SA (0, 10, and 20 mM) were applied through foliar spray. The experimental design used for this study was completely randomized design (CRD) with three replicates. The salt stress reduced the shoot and root fresh weights up to 50.3% and 47% respectively. In addition, foliar chlorophyll a and b contents decreased up to 61-65%. Meanwhile, SA treatment diminished the negative effects of salinity and enhanced the shoot fresh weight (49.5%), root dry weight (70%), chl. a (36%) and chl. b (67%). Plants treated with SA showed an increased levels of both enzymatic i.e. (superoxide dismutase (27%), peroxidase (16%) and catalase (34%)) and non-enzymatic antioxidants i.e. total soluble protein (20%), total soluble sugar (17%), total phenolic (22%) flavonoids (19%), anthocyanin (23%), and endogenous ascorbic acid (23%). Application of SA also increased the levels of osmolytes i.e. glycine betaine (31%) and total free proline (24%). Salinity increased the concentration of Na+ ions and concomitantly decreased the K+ and Ca2+ absorption in canola plants. Overall, the foliar treatments of SA were quite effective in reducing the negative effects of salinity. By comparing both varieties of canola, it was observed that variety V2 (Super) grew better than variety V1 (Faisal). Interestingly, 20 mM foliar application of SA proved to be effective in ameliorating the negative effects of high salinity in canola plants.


Assuntos
Brassica napus , Ácido Salicílico , Estresse Salino , Brassica napus/efeitos dos fármacos , Brassica napus/crescimento & desenvolvimento , Ácido Salicílico/metabolismo , Ácido Salicílico/farmacologia , Estresse Salino/efeitos dos fármacos , Clorofila/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Reguladores de Crescimento de Plantas/farmacologia , Folhas de Planta/efeitos dos fármacos , Cloreto de Sódio/farmacologia , Antioxidantes/metabolismo
6.
Small ; 20(28): e2310099, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38342694

RESUMO

Metal telluride (MTe)-based nanomaterials have emerged as a potential alternative for efficient, highly conductive, robust, and durable electrodes in energy storage/conversion applications. Significant progress in the material development of MTe-based electrodes is well-sought, from the synthesis of its nanostructures, integration of MTes with supporting materials, synthesis of their hybrid morphologies, and their implications in energy storage/conversion systems. Herein, an extensive exploration of the recent advancements and progress in MTes-based nanomaterials is reviewed. This review emphasizes elucidating the fundamental properties of MTes and providing a systematic compilation of its wet and dry synthesis methods. The applications of MTes are extensively summarized and discussed, particularly, in energy storage and conversion systems including batteries (Li-ion, Zn-ion, Li-S, Na-ion, K-ion), supercapacitor, hydrogen evolution reaction (HER), oxygen evolution reaction (OER), oxygen reduction reaction (ORR), and CO2 reduction. The review also emphasizes the future prospects and urgent challenges to be addressed in the development of MTes, providing knowledge for researchers in utilizing MTes in energy storage and conversion technologies.

7.
Am Heart J ; 276: 31-38, 2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-39067559

RESUMO

BACKGROUND: The association of malignant left ventricular hypertrophy (LVH), a specific subphenotype of LVH characterized by elevated levels of high-sensitivity cardiac troponin (hs-cTnT) or N-terminal pro-B-type natriuretic peptide (NT-proBNP), with cognitive decline remains understudied. METHODS: This post-hoc analysis included a total of 8,027 (67.9 ± 9.3 years) SPRINT MIND trial participants who had with at least 1 follow-up cognitive assessment. Participants were classified into 6 groups on the basis of LVH status on electrocardiogram (ECG), and elevations in levels of hs-cTnT ≥14 ng/L or NT-proBNP ≥125 pg/mL at baseline visit. Multivariate Cox proportional hazard models were used to examine the association of LVH/biomarker groups with incident probable dementia, mild cognitive impairment (MCI) and a composite of MCI/probable dementia. RESULTS: Over a median follow-up period of 5 years, there were 306, 597, and 818 incidents of MCI, probable dementia and a composite of MCI/probable dementia, respectively. Compared with participants without LVH and normal biomarker levels, those with concomitant LVH and elevated levels of both biomarkers were associated with a higher risk of probable dementia (HR, 2.50; 95% CI (1.26-4.95), MCI (HR, 1.78; 95% CI (0.99-3.23) and the composite of MCI/ probable dementia (HR, 1.89; 95% CI, 1.16-3.10). CONCLUSIONS: Among SPRINT participants, malignant LVH is associated with incident probable dementia and mild cognitive impairment. These findings underscore the potential utility of measuring hs-cTnT and NT-proBNP levels when LVH is detected on ECG, aiding in the differentiation of individuals with a favorable risk for cognitive impairment from those with a higher risk.

8.
Arch Biochem Biophys ; 756: 110010, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38642632

RESUMO

PARP1 plays a pivotal role in DNA repair within the base excision pathway, making it a promising therapeutic target for cancers involving BRCA mutations. Current study is focused on the discovery of PARP inhibitors with enhanced selectivity for PARP1. Concurrent inhibition of PARP1 with PARP2 and PARP3 affects cellular functions, potentially causing DNA damage accumulation and disrupting immune responses. In step 1, a virtual library of 593 million compounds has been screened using a shape-based screening approach to narrow down the promising scaffolds. In step 2, hierarchical docking approach embedded in Schrödinger suite was employed to select compounds with good dock score, drug-likeness and MMGBSA score. Analysis supplemented with decomposition energy, molecular dynamics (MD) simulations and hydrogen bond frequency analysis, pinpointed that active site residues; H862, G863, R878, M890, Y896 and F897 are crucial for specific binding of ZINC001258189808 and ZINC000092332196 with PARP1 as compared to PARP2 and PARP3. The binding of ZINC000656130962, ZINC000762230673, ZINC001332491123, and ZINC000579446675 also revealed interaction involving two additional active site residues of PARP1, namely N767 and E988. Weaker or no interaction was observed for these residues with PARP2 and PARP3. This approach advances our understanding of PARP-1 specific inhibitors and their mechanisms of action, facilitating the development of targeted therapeutics.


Assuntos
Antineoplásicos , Desenho de Fármacos , Simulação de Dinâmica Molecular , Poli(ADP-Ribose) Polimerase-1 , Inibidores de Poli(ADP-Ribose) Polimerases , Humanos , Poli(ADP-Ribose) Polimerase-1/metabolismo , Poli(ADP-Ribose) Polimerase-1/antagonistas & inibidores , Poli(ADP-Ribose) Polimerase-1/química , Inibidores de Poli(ADP-Ribose) Polimerases/química , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Antineoplásicos/química , Antineoplásicos/farmacologia , Simulação de Acoplamento Molecular , Domínio Catalítico , Poli(ADP-Ribose) Polimerases/metabolismo , Poli(ADP-Ribose) Polimerases/química , Ligação de Hidrogênio
9.
Ecotoxicol Environ Saf ; 273: 116100, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38367607

RESUMO

Chlorothalonil (CTL) is widely used in agricultural production and antifoulant additive globally due to its broad spectrum and non-systemic properties, resulting in its widespread existence in foods, soil and water. Extensive evidence demonstrated that exposure to CTL induced adverse effects on organisms and in particular its reproductive toxicity has been attracted public concern. However, the influences of CTL on oocyte maturation is mysterious so far. In this study, we documented the toxic effects of CTL on oocyte in vitro maturation and the related underlying mechanisms. Exposure to CTL caused continuous activation of spindle assembly checkpoints (SAC) which in turn compromised meiotic maturation in mouse oocyte, featured by the attenuation of polar body extrusion (PBE). Detection of cytoskeletal dynamics demonstrated that CTL exposure weakened the acetylation level of α-tubulin and impaired meiotic spindle apparatus, which was responsible for the aberrant state of SAC. Meanwhile, exposure to CTL damaged the function of mitochondria, inducing the decline of ATP content and the elevation of reactive oxygen species (ROS), which thereby induced early apoptosis and DNA damage in mouse oocytes. In addition, exposure to CTL caused the alteration of the level of histone H3 methylation, indicative of the harmful effects of CTL on epigenetic modifications in oocytes. Further, the CTL-induced oxidative stress activated mitogen-activated protein kinase (MAPK) pathway and injured the maturation of oocytes. In summary, exposure to CTL damaged mouse oocyte in vitro maturation via destroying spindle assembly, inducing oxidative stress and triggering MAPK pathway activation.


Assuntos
Técnicas de Maturação in Vitro de Oócitos , Proteínas Quinases Ativadas por Mitógeno , Nitrilas , Animais , Camundongos , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Estresse Oxidativo , Oócitos/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Apoptose
10.
Mycorrhiza ; 2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-39115556

RESUMO

Rhizospheric interactions among plant roots, arbuscular mycorrhizal fungi, and plant growth-promoting bacteria (PGPB) can enhance plant health by promoting nutrient acquisition and stimulating the plant immune system. This pot experiment, conducted in autoclaved soil, explored the synergistic impacts of the arbuscular mycorrhizal fungus Funneliformis mosseae with four individual bacterial strains, viz.: Cronobacter sp. Rz-7, Serratia sp. 5-D, Pseudomonas sp. ER-20 and Stenotrophomonas sp. RI-4 A on maize growth, root functional traits, root exudates, root colonization, and nutrient uptake. The comprehensive biochemical characterization of these bacterial strains includes assessments of mineral nutrient solubilization, plant hormone production, and drought tolerance. The results showed that all single and interactive treatments of the mycorrhizal fungus and bacterial strains improved maize growth, as compared with the control (no fungus or PGPB). Among single treatments, the application of the mycorrhizal fungus was more effective than the bacterial strains in stimulating maize growth. Within the bacterial treatments, Serratia sp. 5-D and Pseudomonas sp. ER-20 were more effective in enhancing maize growth than Cronobacter sp. Rz-7 and Stenotrophomonas sp. RI-4 A. All bacterial strains were compatible with Funneliformis mosseae to improve root colonization and maize growth. However, the interaction of mycorrhiza and Serratia sp. 5-D (M + 5-D) was the most prominent for maize growth improvement comparatively to all other treatments. We observed that bacterial strains directly enhanced maize growth while indirectly promoting biomass accumulation by facilitating increased mycorrhizal colonization, indicating that these bacteria acted as mycorrhizal helper bacteria.

11.
Artigo em Inglês | MEDLINE | ID: mdl-39042174

RESUMO

OBJECTIVES: The aim of the current study was to evaluate the efficacy of PRF-augmented fascia tympanoplasty versus cartilage tympanoplasty in repair of large TM perforations. METHODS: This randomized clinical trial included 156 patients with dry large tympanic membrane perforations. Patients were randomly allocated into 2 groups, cartilage tympanoplasty group (n = 77) and platelet rich fibrin (PRF) augmented tympanoplasty group (n = 79). Graft take rates, hearing outcomes, operative time, and postoperative complications were documented and compared. RESULTS: Graft take rate was 96.1% in the cartilage group and 93.7% PRF group with no statistically significant difference. Operative time was significantly longer in the cartilage group. No differences in the hearing outcomes and postoperative complications were reported. CONCLUSION: Application of PRF on the fascia in tympanoplasty promotes healing of the tympanic membrane. PRF is safe, cheap, readily available, and easily prepared and applied. It increases the success rates of large tympanic membrane perforations without the need for cartilage grafts.

12.
Drug Dev Ind Pharm ; 50(6): 537-549, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38771120

RESUMO

OBJECTIVE AND SIGNIFICANCE: Reducing the dimensions, when other additives are present, shows potential as a method to improve the dissolution and solubility of biopharmaceutical classification system class II drugs that have poor solubility. In this investigation, the process involved grinding naproxen with nicotinamide with the aim of improving solubility and the rate of dissolution. METHODS: Naproxen was subjected to co-milling with urea, dimethylurea, and nicotinamide using a planetary ball mill for a duration of 90 min, maintaining a 1:1 molar ratio for the excipients (screening studies). The co-milled combinations, naproxen in its pure milled form, and a physical mixture were subjected to analysis using X-ray powder diffraction (XRPD), scanning electron microscopy (SEM), and solubility assessment. The mixture displaying the highest solubility (naproxen-nicotinamide) was chosen for further investigation, involving testing for intrinsic dissolution rate (IDR) and Fourier-transform infrared spectroscopy (FTIR) after co-milling for both 90 and 480 min. RESULTS AND CONCLUSION: The co-milled combination, denoted as S-3b and consisting of the most substantial ratio of nicotinamide to naproxen at 1:3, subjected to 480 min of milling, exhibited a remarkable 45-fold increase in solubility and a 9-fold increase in IDR. XRPD analysis of the co-milled samples demonstrated no amorphization, while SEM images portrayed the aggregates of naproxen with nicotinamide. FTIR outcomes negate the presence of any chemical interactions between the components. The co-milled sample exhibiting the highest solubility and IDR was used to create a tablet, which was then subjected to comprehensive evaluation for standard attributes. The results revealed improved compressibility and dissolution properties.


Assuntos
Naproxeno , Niacinamida , Solubilidade , Comprimidos , Difração de Raios X , Naproxeno/química , Niacinamida/química , Difração de Raios X/métodos , Excipientes/química , Química Farmacêutica/métodos , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Composição de Medicamentos/métodos , Microscopia Eletrônica de Varredura/métodos
13.
World J Microbiol Biotechnol ; 40(10): 302, 2024 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-39150639

RESUMO

The genus Phytophthora contains more than 100 plant pathogenic species that parasitize a wide range of plants, including economically important fruits, vegetables, cereals, and forest trees, causing significant losses. Global agriculture is seriously threatened by fungicide resistance in Phytophthora species, which makes it imperative to fully comprehend the mechanisms, frequency, and non-chemical management techniques related to resistance mutations. The mechanisms behind fungicide resistance, such as target-site mutations, efflux pump overexpression, overexpression of target genes and metabolic detoxification routes for fungicides routinely used against Phytophthora species, are thoroughly examined in this review. Additionally, it assesses the frequency of resistance mutations in various Phytophthora species and geographical areas, emphasizing the rise of strains that are resistant to multiple drugs. The effectiveness of non-chemical management techniques, including biological control, host resistance, integrated pest management plans, and cultural practices, in reducing fungicide resistance is also thoroughly evaluated. The study provides important insights for future research and the development of sustainable disease management strategies to counter fungicide resistance in Phytophthora species by synthesizing current information and identifying knowledge gaps.


Assuntos
Farmacorresistência Fúngica , Fungicidas Industriais , Phytophthora , Doenças das Plantas , Phytophthora/efeitos dos fármacos , Phytophthora/genética , Fungicidas Industriais/farmacologia , Doenças das Plantas/microbiologia , Doenças das Plantas/prevenção & controle , Doenças das Plantas/parasitologia , Farmacorresistência Fúngica/genética , Mutação , Agricultura
14.
Pak J Med Sci ; 40(7): 1584-1586, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39092069

RESUMO

Pulmonary embolism is a life-threatening emergency. Seizure as the clinical presentation of pulmonary embolism is extremely rare. In this case report a 47-year-old female had an episode of seizure after undergoing total abdominal hysterectomy with bilateral salpingo-oophorectomy due to myometrial uterine fibroids. The patient had no past history of seizure or cardiovascular disease. Based on raised D-Dimers and echocardiography a provisional diagnosis of pulmonary embolism was made, which was confirmed on CT angiogram that showed bilateral saddle pulmonary embolism. Clinicians need to be aware that Pulmonary embolism is a possibility as the differential diagnosis for unexplained, new-onset of seizure activity.

15.
Sensors (Basel) ; 23(24)2023 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-38139524

RESUMO

The Compact Muon Solenoid (CMS) experiment is a general-purpose detector for high-energy collision at the Large Hadron Collider (LHC) at CERN. It employs an online data quality monitoring (DQM) system to promptly spot and diagnose particle data acquisition problems to avoid data quality loss. In this study, we present a semi-supervised spatio-temporal anomaly detection (AD) monitoring system for the physics particle reading channels of the Hadron Calorimeter (HCAL) of the CMS using three-dimensional digi-occupancy map data of the DQM. We propose the GraphSTAD system, which employs convolutional and graph neural networks to learn local spatial characteristics induced by particles traversing the detector and the global behavior owing to shared backend circuit connections and housing boxes of the channels, respectively. Recurrent neural networks capture the temporal evolution of the extracted spatial features. We validate the accuracy of the proposed AD system in capturing diverse channel fault types using the LHC collision data sets. The GraphSTAD system achieves production-level accuracy and is being integrated into the CMS core production system for real-time monitoring of the HCAL. We provide a quantitative performance comparison with alternative benchmark models to demonstrate the promising leverage of the presented system.

17.
Methods Mol Biol ; 2788: 171-193, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38656514

RESUMO

Plants produce diverse specialized metabolites (SMs) that do not participate in plant growth and development but help them adapt to various environmental conditions. In addition to aiding in plant adaptation, different SMs serve as active ingredients for pharmaceutical and cosmetics products. However, despite their significant role in plant adaptation and industrial importance, the genes involved in the biosynthesis and regulation of many SMs remain largely unknown. This hinders deciphering the specific role of SMs in plant adaptation and limits their industrial utilization. Since many SMs pathway genes are expected to act in tight association with each other within a coexpression network, the network biology approach, such as weighted gene coexpression network analysis, could be used to identify the unknown genes. This chapter describes a workflow for constructing a gene coexpression network to identify genes that could be associated with the biosynthesis and regulation of SMs.


Assuntos
Regulação da Expressão Gênica de Plantas , Redes Reguladoras de Genes , Plantas , Metabolismo Secundário , Metabolismo Secundário/genética , Plantas/genética , Plantas/metabolismo , Perfilação da Expressão Gênica/métodos , Biologia Computacional/métodos , Genes de Plantas
18.
Int J Dent ; 2024: 8367693, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39007058

RESUMO

Objectives: Rotary single-file endodontic systems are commonly used for root canal treatment. However, very few studies have evaluated the apical extrusion of debris generated by these systems during canal preparation at normal body temperature in laboratory conditions. The aim of this study was to evaluate the amount of apically extruded debris caused by seven different single-file endodontic instrumentation systems at body temperature in mandibular molar teeth with curved root canals. Methods: One hundred forty mandibular first permanent molars were randomly divided into seven groups (n = 20) to be prepared by one of the following systems at 35°C: Reciproc Blue (REC Blue), WaveOne Gold (WOG), One Reci (OR), Neoniti, HyFlex EDM (HEDM), One Curve (OC), or XP Shaper (XPS). Debris was collected into preweighted Eppendorf tubes. The weight of the extruded debris was recorded by subtracting the weight of the tooth-free apparatus from the post-procedure weight. Data were analyzed by one-way ANOVA and Tukey's tests (p < 5%). Results: REC Blue, WOG, and OR groups extruded significantly more debris from the apex than XPS, OC, and Neoniti groups (p < 0.05). No significant difference was observed among the XPS, OC, Neoniti, and HEDM groups (p > 0.05). Conclusion: All the instruments were associated with debris extrusion. However, REC Blue, WOG, and OR extrude significantly more debris than other instruments. The amount of debris with different files was REC Blue > OR > WOG > HEDM > OC > Neoniti > XPS. XPS, Neoniti, and OC caused significantly less extrusion of debris than REC Blue, WOG, and OR.

19.
Data Brief ; 52: 110069, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38304386

RESUMO

Unmanned aerial vehicles (UAV) rely on a variety of sensors to perceive and navigate their airborne environment with precision. The autopilot software interprets this sensory data, acting as the control mechanism for autonomous flights. As UAVs are exposed to physical environment, they are vulnerable to potential impairments in their sensory mechanism. Their real-time interactions with the actual atmosphere make them susceptible to cyber exploitations as well, where sensory data alterations through counterfeit wireless signals pose a significant threat. In this context, sensor failures can result into unsafe flight conditions, as the fault handling logic may fail to anticipate the context of the issue, allowing autopilot to execute operations without necessary adjustments. Untimely control of sensor failures can result in mid-air collisions or crashes. To address these challenges, we created Biomisa Arducopter Sensory Critique (BASiC) dataset, a state-of-the-art resource for UAV sensor failure analysis. The BASiC dataset comprises 70 autonomous flight data, spanning over 7 hours. It encompasses 3+ hours of (each) pre-failure and post-failure data, along with 1+ hour of no-failure data. We selected the ArduPilot platform as our demonstration aerial vehicle to conduct the experiments. By engineering Software in the Loop (SITL) parameters, we effectively executed sensor failure test simulations. Our dataset incorporates six representative sensors failures which are critical to UAV operations: global positioning system (GPS) for precise aerial positioning, remote control for communication with the ground control station (GCS), accelerometer for measuring linear acceleration, gyroscope for rotational acceleration measurement, compass providing heading information, and barometer for maintaining flight height based on atmospheric pressure data. The availability of the BASiC dataset will benefit the research community, empowering researchers to explore and experiment with state-of-the-art deep learning models by tailoring them for time series signal analysis. It may also contribute in enhancing the safety and reliability of mission-critical autonomous UAV flights.

20.
Heliyon ; 10(5): e26708, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38434269

RESUMO

The structural, morphological, mechanical, and electronic properties of nickel-substituted manganese oxide (NixMn1-xO, where x = 0.0, 0.2, and 0.4) were studied using experimental techniques. The compounds were synthesized using a hydrothermal method. The face-centered cubic structures of the examined compounds were confirmed by XRD. Scanning electron microscopy (SEM) images revealed that the particles were well-shaped, while elemental mapping with energy dispersive spectroscopy (EDS) confirmed that the examined compounds had the appropriate proportions of Ni, Mn, and O. The FT-IR spectroscopy results indicated the respective functional groups. Raman spectroscopy results disclosed the vibration modes of the respective materials. The Tauc plot reveals the semiconducting nature of the compounds. The UV-Vis bandgap study revealed the semiconductor natures of compounds. This demonstrates that these nanoparticles can be used in atom lasers, photovoltaics, and other electronic applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA