Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Bioconjug Chem ; 26(8): 1713-23, 2015 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-26193334

RESUMO

Toll-like receptors (TLRs) in the innate immune system recognize specific pathogen-associated molecular patterns derived from microbes. Synthetic small molecule TLR7 agonists have been extensively evaluated as topical agents for antiviral and anticancer therapy, and as adjuvants for vaccine. However, safe and reproducible administration of synthetic TLR7 ligands has been difficult to achieve due to undesirable pharmacokinetics and unacceptable side effects. Here, we conjugated a versatile low molecular weight TLR7 ligand to various polysaccharides in order to improve its water solubility, enhance its potency, and maintain low toxicity. The synthetic TLR7 ligand, 2-methoxyethoxy-8-oxo-9-(4-carboxy benzyl)adenine, designated 1V209, was stably conjugated to primary amine functionalized Ficoll or dextran using benzoic acid functional groups. The conjugation ratios using specified equivalents of TLR7 ligand were dose responsive and reproducible. The zeta potential value of the polysaccharides was decreased in inverse proportion to the ratio of conjugated TLR7 ligand. These conjugates were highly water-soluble, stable for at least 6 months at room temperature in aqueous solution, and easy to lyophilize and reconstitute without altering potency. In vitro studies with murine mononuclear leukocytes showed that the TLR7 agonist conjugated to polysaccharides had 10- to 1000-fold higher potencies than the unconjugated TLR7 ligand. In vivo pharmacodynamics studies after injection indicate that the conjugates induced systemic cytokine production. When the conjugates were used as vaccine adjuvants, they enhanced antigen specific humoral and cellular immune responses to a much greater extent than did unconjugated TLR7 ligands. These results indicated that small molecule TLR7 ligands conjugated to polysaccharides have improved immunostimulatory potency and pharmacodynamics. Polysaccharides can be conjugated to a variety of molecules such as antigens, peptides, and TLR ligands. Therefore, such conjugates could represent a versatile platform for the development of vaccines against cancer and infectious diseases.


Assuntos
Adjuvantes Imunológicos/administração & dosagem , Adjuvantes Imunológicos/química , Células Dendríticas/imunologia , Inflamação/imunologia , Macrófagos/imunologia , Polissacarídeos/química , Receptor 7 Toll-Like/fisiologia , Animais , Medula Óssea/efeitos dos fármacos , Medula Óssea/imunologia , Células Cultivadas , Citocinas/imunologia , Citocinas/metabolismo , Células Dendríticas/citologia , Células Dendríticas/efeitos dos fármacos , Feminino , Humanos , Imunização , Inflamação/tratamento farmacológico , Inflamação/patologia , Ligantes , Macrófagos/citologia , Macrófagos/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout
2.
Bioorg Med Chem Lett ; 24(21): 4931-8, 2014 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-25288184

RESUMO

The Toll-like receptors (TLRs) are critical components of the innate immune system that regulate immune recognition in part through NF-κB activation. A human cell-based high throughput screen (HTS) revealed substituted 4-aminoquinazolines to be small molecular weight activators of NF-κB. The most potent hit compound predominantly stimulated through the human TLR4/MD2 complex, and had less activity with the mouse TLR4/MD2. There was no activity with other TLRs and the TLR4 activation was MD-2 dependent and CD14 independent. Synthetic modifications of the quinazoline scaffold at the 2 and 4 positions revealed trends in structure-activity relationships with respect to TLR dependent production of the NF-κB associated cytokine IL-8 in human peripheral blood mononuclear cells, as well as IL-6 in mouse antigen presenting cells. Furthermore, the hit compound in this series also activated the interferon signaling pathway resulting in type I interferon production. Substitution at the O-phenyl moiety with groups such as bromine, chlorine and methyl resulted in enhanced immunological activity. Computational studies indicated that the 4-aminoquinazoline compounds bind primarily to human MD-2 in the TLR4/MD-2 complex. These small molecules, which preferentially stimulate human rather than mouse innate immune cells, may be useful as adjuvants or immunotherapeutic agents.


Assuntos
Interleucina-6/metabolismo , Interleucina-8/metabolismo , Leucócitos Mononucleares/metabolismo , NF-kappa B/metabolismo , Quinazolinas/química , Receptor 4 Toll-Like/metabolismo , Receptores Toll-Like/metabolismo , Animais , Ensaios de Triagem em Larga Escala , Humanos , Imunidade Inata , Leucócitos Mononucleares/citologia , Ligantes , Camundongos , Modelos Moleculares , Estrutura Molecular , Quinazolinas/metabolismo , Transdução de Sinais , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA