Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Biochim Biophys Acta ; 1782(5): 287-94, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-18313410

RESUMO

Defects of the oxidative ATP production pathway lead to an amazing variety of disease phenotypes, ranging from childhood encephalomyopathies to hereditary tumor formation. A key enzyme of tricarboxylic cycle, fumarate hydratase (FH), is involved in encephalopathies, but also in leiomyoma formation, and occasionally also in various types of cancer. MELAS (mitochondrial encephalomyopathy, lactic acidosis and stroke-like episodes) and NARP (neuropathy ataxia retinitis pigmentosa) are progressive neurological disorders, caused by mitochondrial DNA mutations and respiratory chain (RC) deficiency. These diseases lead to disability and premature death, but not to tumorigenesis. We studied the cellular consequences of FH and RC deficiencies, aiming to identify general responses to energy metabolism defect and those specific for FH-deficiency, suggestively connected to tumorigenesis. Unlike in RC deficiency, the FH-deficient diploid human fibroblasts showed no signs of oxidative stress, but had a reduced redox state with high glutathione levels. The cytoplasmic FH isoform, previously described, but with an unknown function, was completely lacking in all FH-deficient lines. Fumarate was increased in two of our FH-lines, but accumulation of HIF-1alpha was not detected. Glycolysis was induced in both MELAS and in FH-deficiency. Accumulation of fumarate in primary fibroblasts did not activate a hypoxia response, suggesting that hypoxia activation due to fumarate accumulation may be a tissue-specific response. The lack of cytoplasmic form of FH and the reduced redox environment were typical for all FH-mutant lines, and their role in FH-related tumorigenesis requires further attention.


Assuntos
Fumarato Hidratase/metabolismo , Doenças Mitocondriais/metabolismo , Hipóxia Celular , Linhagem Celular , Proliferação de Células , Citoplasma/enzimologia , Transporte de Elétrons , Metabolismo Energético , Fibroblastos/enzimologia , Fibroblastos/patologia , Fumarato Hidratase/deficiência , Fumaratos/metabolismo , Homozigoto , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Doenças Mitocondriais/enzimologia , Doenças Mitocondriais/patologia , Proteínas Mutantes/metabolismo , Mutação/genética , Transporte Proteico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA