Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Genome Res ; 33(1): 80-95, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36414416

RESUMO

The identification and characterization of circulating tumor cells (CTCs) are important for gaining insights into the biology of metastatic cancers, monitoring disease progression, and medical management of the disease. The limiting factor in the enrichment of purified CTC populations is their sparse availability, heterogeneity, and altered phenotypes relative to the primary tumor. Intensive research both at the technical and molecular fronts led to the development of assays that ease CTC detection and identification from peripheral blood. Most CTC detection methods based on single-cell RNA sequencing (scRNA-seq) use a mix of size selection, marker-based white blood cell (WBC) depletion, and antibodies targeting tumor-associated antigens. However, the majority of these methods either miss out on atypical CTCs or suffer from WBC contamination. We present unCTC, an R package for unbiased identification and characterization of CTCs from single-cell transcriptomic data. unCTC features many standard and novel computational and statistical modules for various analyses. These include a novel method of scRNA-seq clustering, named deep dictionary learning using k-means clustering cost (DDLK), expression-based copy number variation (CNV) inference, and combinatorial, marker-based verification of the malignant phenotypes. DDLK enables robust segregation of CTCs and WBCs in the pathway space, as opposed to the gene expression space. We validated the utility of unCTC on scRNA-seq profiles of breast CTCs from six patients, captured and profiled using an integrated ClearCell FX and Polaris workflow that works by the principles of size-based separation of CTCs and marker-based WBC depletion.


Assuntos
Células Neoplásicas Circulantes , Humanos , Células Neoplásicas Circulantes/metabolismo , Transcriptoma , Variações do Número de Cópias de DNA , Perfilação da Expressão Gênica , Biomarcadores Tumorais
2.
Bioinformatics ; 40(4)2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38608194

RESUMO

MOTIVATION: Dysregulation of a gene's function, either due to mutations or impairments in regulatory networks, often triggers pathological states in the affected tissue. Comprehensive mapping of these apparent gene-pathology relationships is an ever-daunting task, primarily due to genetic pleiotropy and lack of suitable computational approaches. With the advent of high throughput genomics platforms and community scale initiatives such as the Human Cell Landscape project, researchers have been able to create gene expression portraits of healthy tissues resolved at the level of single cells. However, a similar wealth of knowledge is currently not at our finger-tip when it comes to diseases. This is because the genetic manifestation of a disease is often quite diverse and is confounded by several clinical and demographic covariates. RESULTS: To circumvent this, we mined ∼18 million PubMed abstracts published till May 2019 and automatically selected ∼4.5 million of them that describe roles of particular genes in disease pathogenesis. Further, we fine-tuned the pretrained bidirectional encoder representations from transformers (BERT) for language modeling from the domain of natural language processing to learn vector representation of entities such as genes, diseases, tissues, cell-types, etc., in a way such that their relationship is preserved in a vector space. The repurposed BERT predicted disease-gene associations that are not cited in the training data, thereby highlighting the feasibility of in silico synthesis of hypotheses linking different biological entities such as genes and conditions. AVAILABILITY AND IMPLEMENTATION: PathoBERT pretrained model: https://github.com/Priyadarshini-Rai/Pathomap-Model. BioSentVec-based abstract classification model: https://github.com/Priyadarshini-Rai/Pathomap-Model. Pathomap R package: https://github.com/Priyadarshini-Rai/Pathomap.


Assuntos
Mineração de Dados , Humanos , Mineração de Dados/métodos , Biologia Computacional/métodos , Processamento de Linguagem Natural
3.
Genome Res ; 31(4): 689-697, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33674351

RESUMO

Systematic delineation of complex biological systems is an ever-challenging and resource-intensive process. Single-cell transcriptomics allows us to study cell-to-cell variability in complex tissues at an unprecedented resolution. Accurate modeling of gene expression plays a critical role in the statistical determination of tissue-specific gene expression patterns. In the past few years, considerable efforts have been made to identify appropriate parametric models for single-cell expression data. The zero-inflated version of Poisson/negative binomial and log-normal distributions have emerged as the most popular alternatives owing to their ability to accommodate high dropout rates, as commonly observed in single-cell data. Although the majority of the parametric approaches directly model expression estimates, we explore the potential of modeling expression ranks, as robust surrogates for transcript abundance. Here we examined the performance of the discrete generalized beta distribution (DGBD) on real data and devised a Wald-type test for comparing gene expression across two phenotypically divergent groups of single cells. We performed a comprehensive assessment of the proposed method to understand its advantages compared with some of the existing best-practice approaches. We concluded that besides striking a reasonable balance between Type I and Type II errors, ROSeq, the proposed differential expression test, is exceptionally robust to expression noise and scales rapidly with increasing sample size. For wider dissemination and adoption of the method, we created an R package called ROSeq and made it available on the Bioconductor platform.


Assuntos
Perfilação da Expressão Gênica , RNA-Seq , Análise de Célula Única , Transcriptoma
4.
Chembiochem ; 25(1): e202300577, 2024 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-37874183

RESUMO

Cellular genome is considered a dynamic blueprint of a cell since it encodes genetic information that gets temporally altered due to various endogenous and exogenous insults. Largely, the extent of genomic dynamicity is controlled by the trade-off between DNA repair processes and the genotoxic potential of the causative agent (genotoxins or potential carcinogens). A subset of genotoxins form DNA adducts by covalently binding to the cellular DNA, triggering structural or functional changes that lead to significant alterations in cellular processes via genetic (e. g., mutations) or non-genetic (e. g., epigenome) routes. Identification, quantification, and characterization of DNA adducts are indispensable for their comprehensive understanding and could expedite the ongoing efforts in predicting carcinogenicity and their mode of action. In this review, we elaborate on using Artificial Intelligence (AI)-based modeling in adducts biology and present multiple computational strategies to gain advancements in decoding DNA adducts. The proposed AI-based strategies encompass predictive modeling for adduct formation via metabolic activation, novel adducts' identification, prediction of biochemical routes for adduct formation, adducts' half-life predictions within biological ecosystems, and, establishing methods to predict the link between adducts chemistry and its location within the genomic DNA. In summary, we discuss some futuristic AI-based approaches in DNA adduct biology.


Assuntos
Adutos de DNA , Ecossistema , Inteligência Artificial , Mutagênicos , DNA/genética
5.
Brief Bioinform ; 23(5)2022 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-35868454

RESUMO

Artificial intelligence (AI)-based computational techniques allow rapid exploration of the chemical space. However, representation of the compounds into computational-compatible and detailed features is one of the crucial steps for quantitative structure-activity relationship (QSAR) analysis. Recently, graph-based methods are emerging as a powerful alternative to chemistry-restricted fingerprints or descriptors for modeling. Although graph-based modeling offers multiple advantages, its implementation demands in-depth domain knowledge and programming skills. Here we introduce deepGraphh, an end-to-end web service featuring a conglomerate of established graph-based methods for model generation for classification or regression tasks. The graphical user interface of deepGraphh supports highly configurable parameter support for model parameter tuning, model generation, cross-validation and testing of the user-supplied query molecules. deepGraphh supports four widely adopted methods for QSAR analysis, namely, graph convolution network, graph attention network, directed acyclic graph and Attentive FP. Comparative analysis revealed that deepGraphh supported methods are comparable to the descriptors-based machine learning techniques. Finally, we used deepGraphh models to predict the blood-brain barrier permeability of human and microbiome-generated metabolites. In summary, deepGraphh offers a one-stop web service for graph-based methods for chemoinformatics.


Assuntos
Inteligência Artificial , Relação Quantitativa Estrutura-Atividade , Humanos , Aprendizado de Máquina
6.
Nat Chem Biol ; 18(11): 1204-1213, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35953549

RESUMO

The genome of a eukaryotic cell is often vulnerable to both intrinsic and extrinsic threats owing to its constant exposure to a myriad of heterogeneous compounds. Despite the availability of innate DNA damage responses, some genomic lesions trigger malignant transformation of cells. Accurate prediction of carcinogens is an ever-challenging task owing to the limited information about bona fide (non-)carcinogens. We developed Metabokiller, an ensemble classifier that accurately recognizes carcinogens by quantitatively assessing their electrophilicity, their potential to induce proliferation, oxidative stress, genomic instability, epigenome alterations, and anti-apoptotic response. Concomitant with the carcinogenicity prediction, Metabokiller is fully interpretable and outperforms existing best-practice methods for carcinogenicity prediction. Metabokiller unraveled potential carcinogenic human metabolites. To cross-validate Metabokiller predictions, we performed multiple functional assays using Saccharomyces cerevisiae and human cells with two Metabokiller-flagged human metabolites, namely 4-nitrocatechol and 3,4-dihydroxyphenylacetic acid, and observed high synergy between Metabokiller predictions and experimental validations.


Assuntos
Inteligência Artificial , Carcinógenos , Humanos , Carcinógenos/toxicidade , Ácido 3,4-Di-Hidroxifenilacético , Transformação Celular Neoplásica/genética , Instabilidade Genômica
7.
J Biol Chem ; 298(8): 102177, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35753349

RESUMO

Cancers are caused by genomic alterations that may be inherited, induced by environmental carcinogens, or caused due to random replication errors. Postinduction of carcinogenicity, mutations further propagate and drastically alter the cancer genomes. Although a subset of driver mutations has been identified and characterized to date, most cancer-related somatic mutations are indistinguishable from germline variants or other noncancerous somatic mutations. Thus, such overlap impedes appreciation of many deleterious but previously uncharacterized somatic mutations. The major bottleneck arises due to patient-to-patient variability in mutational profiles, making it difficult to associate specific mutations with a given disease outcome. Here, we describe a newly developed technique Continuous Representation of Codon Switches (CRCS), a deep learning-based method that allows us to generate numerical vector representations of mutations, thereby enabling numerous machine learning-based tasks. We demonstrate three major applications of CRCS; first, we show how CRCS can help detect cancer-related somatic mutations in the absence of matched normal samples, which has applications in cell-free DNA-based assessment of tumor mutation burden. Second, the proposed approach also enables identification and exploration of driver genes; our analyses implicate DMD, RSK4, OFD1, WDR44, and AFF2 as potential cancer drivers. Finally, we used CRCS to score individual mutations in a tumor sample, which was found to be predictive of patient survival in bladder urothelial carcinoma, hepatocellular carcinoma, and lung adenocarcinoma. Taken together, we propose CRCS as a valuable computational tool for analysis of the functional significance of individual cancer mutations.


Assuntos
Carcinoma de Células de Transição , Aprendizado Profundo , Neoplasias , Neoplasias da Bexiga Urinária , Genômica/métodos , Humanos , Mutação , Neoplasias/genética
8.
Brief Bioinform ; 22(6)2021 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-34184038

RESUMO

Dramatic genomic alterations, either inducible or in a pathological state, dismantle the core regulatory networks, leading to the activation of normally silent genes. Despite possessing immense therapeutic potential, accurate detection of these transcripts is an ever-challenging task, as it requires prior knowledge of the physiological gene expression levels. Here, we introduce EcTracker, an R-/Shiny-based single-cell data analysis web server that bestows a plethora of functionalities that collectively enable the quantitative and qualitative assessments of bona fide cell types or tissue-specific transcripts and, conversely, the ectopically expressed genes in the single-cell ribonucleic acid sequencing datasets. Moreover, it also allows regulon analysis to identify the key transcriptional factors regulating the user-selected gene signatures. To demonstrate the EcTracker functionality, we reanalyzed the CRISPR interference (CRISPRi) dataset of the human embryonic stem cells differentiated into endoderm lineage and identified the prominent enrichment of a specific gene signature in the SMAD2 knockout cells whose identity was ambiguous in the original study. The key distinguishing features of EcTracker lie within its processing speed, availability of multiple add-on modules, interactive graphical user interface and comprehensiveness. In summary, EcTracker provides an easy-to-perform, integrative and end-to-end single-cell data analysis platform that allows decoding of cellular identities, identification of ectopically expressed genes and their regulatory networks, and therefore, collectively imparts a novel dimension for analyzing single-cell datasets.


Assuntos
Biologia Computacional , Expressão Ectópica do Gene , RNA-Seq , Análise de Célula Única , Software , Biologia Computacional/métodos , Bases de Dados Genéticas , Perfilação da Expressão Gênica , Redes Reguladoras de Genes , Humanos , Especificidade de Órgãos , Análise de Célula Única/métodos , Fatores de Transcrição/metabolismo , Interface Usuário-Computador , Navegador
9.
Brief Bioinform ; 22(2): 873-881, 2021 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-32810867

RESUMO

A prominent clinical symptom of 2019-novel coronavirus (nCoV) infection is hyposmia/anosmia (decrease or loss of sense of smell), along with general symptoms such as fatigue, shortness of breath, fever and cough. The identity of the cell lineages that underpin the infection-associated loss of olfaction could be critical for the clinical management of 2019-nCoV-infected individuals. Recent research has confirmed the role of angiotensin-converting enzyme 2 (ACE2) and transmembrane protease serine 2 (TMPRSS2) as key host-specific cellular moieties responsible for the cellular entry of the virus. Accordingly, the ongoing medical examinations and the autopsy reports of the deceased individuals indicate that organs/tissues with high expression levels of ACE2, TMPRSS2 and other putative viral entry-associated genes are most vulnerable to the infection. We studied if anosmia in 2019-nCoV-infected individuals can be explained by the expression patterns associated with these host-specific moieties across the known olfactory epithelial cell types, identified from a recently published single-cell expression study. Our findings underscore selective expression of these viral entry-associated genes in a subset of sustentacular cells (SUSs), Bowman's gland cells (BGCs) and stem cells of the olfactory epithelium. Co-expression analysis of ACE2 and TMPRSS2 and protein-protein interaction among the host and viral proteins elected regulatory cytoskeleton protein-enriched SUSs as the most vulnerable cell type of the olfactory epithelium. Furthermore, expression, structural and docking analyses of ACE2 revealed the potential risk of olfactory dysfunction in four additional mammalian species, revealing an evolutionarily conserved infection susceptibility. In summary, our findings provide a plausible cellular basis for the loss of smell in 2019-nCoV-infected patients.


Assuntos
Anosmia/patologia , COVID-19/complicações , Enzima de Conversão de Angiotensina 2/metabolismo , COVID-19/patologia , COVID-19/virologia , Humanos , SARS-CoV-2/isolamento & purificação , Proteínas Virais/metabolismo , Internalização do Vírus
10.
J Biol Chem ; 297(2): 100956, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34265305

RESUMO

The molecular mechanisms of olfaction, or the sense of smell, are relatively underexplored compared with other sensory systems, primarily because of its underlying molecular complexity and the limited availability of dedicated predictive computational tools. Odorant receptors (ORs) allow the detection and discrimination of a myriad of odorant molecules and therefore mediate the first step of the olfactory signaling cascade. To date, odorant (or agonist) information for the majority of these receptors is still unknown, limiting our understanding of their functional relevance in odor-induced behavioral responses. In this study, we introduce OdoriFy, a Web server featuring powerful deep neural network-based prediction engines. OdoriFy enables (1) identification of odorant molecules for wildtype or mutant human ORs (Odor Finder); (2) classification of user-provided chemicals as odorants/nonodorants (Odorant Predictor); (3) identification of responsive ORs for a query odorant (OR Finder); and (4) interaction validation using Odorant-OR Pair Analysis. In addition, OdoriFy provides the rationale behind every prediction it makes by leveraging explainable artificial intelligence. This module highlights the basis of the prediction of odorants/nonodorants at atomic resolution and for the ORs at amino acid levels. A key distinguishing feature of OdoriFy is that it is built on a comprehensive repertoire of manually curated information of human ORs with their known agonists and nonagonists, making it a highly interactive and resource-enriched Web server. Moreover, comparative analysis of OdoriFy predictions with an alternative structure-based ligand interaction method revealed comparable results. OdoriFy is available freely as a web service at https://odorify.ahujalab.iiitd.edu.in/olfy/.


Assuntos
Inteligência Artificial , Odorantes , Ligantes , Neurônios Receptores Olfatórios/metabolismo , Transdução de Sinais
11.
Bioinformatics ; 37(12): 1769-1771, 2021 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-33416866

RESUMO

SUMMARY: Machine Learning-based techniques are emerging as state-of-the-art methods in chemoinformatics to selectively, effectively and speedily identify biologically relevant molecules from large databases. So far, a multitude of such techniques have been proposed, but unfortunately due to their sparse availability, and the dependency on high-end computational literacy, their wider adaptation faces challenges, at least in the context of G-Protein Coupled Receptors (GPCRs)-associated chemosensory research. Here, we report Machine-OlF-Action (MOA), a user-friendly, open-source computational framework, that utilizes user-supplied SMILES (simplified molecular input line entry system) of the chemicals, along with their activation status, to synthesize classification models. MOA integrates a number of popular chemical databases collectively harboring approximately 103 million chemical moieties. MOA also facilitates customized screening of user-supplied chemical datasets. A key feature of MOA is its ability to embed molecules based on the similarity of their local neighborhood, by utilizing a state-of-the-art model interpretability framework LIME. We demonstrate the utility of MOA in identifying previously unreported agonists for human and mouse olfactory receptors OR1A1 and MOR174-9 by leveraging the chemical features of their known agonists and non-agonists. In summary, here we develop an ML-powered software playground for performing supervisory learning tasks involving chemical compounds. AVAILABILITY AND IMPLEMENTATION: MOA is available for Windows, Mac and Linux operating systems. It's accessible at (https://ahuja-lab.in/). Source code, user manual, step-by-step guide and support is available at GitHub (https://github.com/the-ahuja-lab/Machine-Olf-Action). For results, reproducibility and hyperparameters, refer to Supplementary Notes. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.

12.
Chem Senses ; 462021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-33367502

RESUMO

In a preregistered, cross-sectional study, we investigated whether olfactory loss is a reliable predictor of COVID-19 using a crowdsourced questionnaire in 23 languages to assess symptoms in individuals self-reporting recent respiratory illness. We quantified changes in chemosensory abilities during the course of the respiratory illness using 0-100 visual analog scales (VAS) for participants reporting a positive (C19+; n = 4148) or negative (C19-; n = 546) COVID-19 laboratory test outcome. Logistic regression models identified univariate and multivariate predictors of COVID-19 status and post-COVID-19 olfactory recovery. Both C19+ and C19- groups exhibited smell loss, but it was significantly larger in C19+ participants (mean ± SD, C19+: -82.5 ± 27.2 points; C19-: -59.8 ± 37.7). Smell loss during illness was the best predictor of COVID-19 in both univariate and multivariate models (ROC AUC = 0.72). Additional variables provide negligible model improvement. VAS ratings of smell loss were more predictive than binary chemosensory yes/no-questions or other cardinal symptoms (e.g., fever). Olfactory recovery within 40 days of respiratory symptom onset was reported for ~50% of participants and was best predicted by time since respiratory symptom onset. We find that quantified smell loss is the best predictor of COVID-19 amongst those with symptoms of respiratory illness. To aid clinicians and contact tracers in identifying individuals with a high likelihood of having COVID-19, we propose a novel 0-10 scale to screen for recent olfactory loss, the ODoR-19. We find that numeric ratings ≤2 indicate high odds of symptomatic COVID-19 (4 < OR < 10). Once independently validated, this tool could be deployed when viral lab tests are impractical or unavailable.


Assuntos
Anosmia/diagnóstico , COVID-19/diagnóstico , Adulto , Anosmia/etiologia , COVID-19/complicações , Estudos Transversais , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Prognóstico , SARS-CoV-2/isolamento & purificação , Autorrelato , Olfato
13.
EMBO Rep ; 20(4)2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30886000

RESUMO

Cardiac dysfunctions dramatically increase with age. Revealing a currently unknown contributor to cardiac ageing, we report the age-dependent, cardiac-specific accumulation of the lysosphingolipid sphinganine (dihydrosphingosine, DHS) as an evolutionarily conserved hallmark of the aged vertebrate heart. Mechanistically, the DHS-derivative sphinganine-1-phosphate (DHS1P) directly inhibits HDAC1, causing an aberrant elevation in histone acetylation and transcription levels, leading to DNA damage. Accordingly, the pharmacological interventions, preventing (i) the accumulation of DHS1P using SPHK2 inhibitors, (ii) the aberrant increase in histone acetylation using histone acetyltransferase (HAT) inhibitors, (iii) the DHS1P-dependent increase in transcription using an RNA polymerase II inhibitor, block DHS-induced DNA damage in human cardiomyocytes. Importantly, an increase in DHS levels in the hearts of healthy young adult mice leads to an impairment in cardiac functionality indicated by a significant reduction in left ventricular fractional shortening and ejection fraction, mimicking the functional deterioration of aged hearts. These molecular and functional defects can be partially prevented in vivo using HAT inhibitors. Together, we report an evolutionarily conserved mechanism by which increased DHS levels drive the decline in cardiac health.


Assuntos
Envelhecimento/genética , Envelhecimento/metabolismo , Variação Genética , Instabilidade Genômica , Miocárdio/metabolismo , Esfingolipídeos/metabolismo , Animais , Curcumina/química , Curcumina/farmacologia , Dano ao DNA/efeitos dos fármacos , Metabolismo Energético , Epigênese Genética , Evolução Molecular , Fundulidae , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Genômica/métodos , Histona Acetiltransferases/química , Histona Acetiltransferases/metabolismo , Inibidores de Histona Desacetilases/química , Inibidores de Histona Desacetilases/farmacologia , Histonas/metabolismo , Humanos , Modelos Moleculares , Miócitos Cardíacos/metabolismo , Esfingosina/análogos & derivados , Esfingosina/metabolismo , Relação Estrutura-Atividade , Vertebrados/genética , Vertebrados/metabolismo
14.
Nucleic Acids Res ; 47(6): e32, 2019 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-30698727

RESUMO

Long non-coding RNAs (lncRNAs) can act as scaffolds that promote the interaction of proteins, RNA, and DNA. There is increasing evidence of sequence-specific interactions of lncRNAs with DNA via triple-helix (triplex) formation. This process allows lncRNAs to recruit protein complexes to specific genomic regions and regulate gene expression. Here we propose a computational method called Triplex Domain Finder (TDF) to detect triplexes and characterize DNA-binding domains and DNA targets statistically. Case studies showed that this approach can detect the known domains of lncRNAs Fendrr, HOTAIR and MEG3. Moreover, we validated a novel DNA-binding domain in MEG3 by a genome-wide sequencing method. We used TDF to perform a systematic analysis of the triplex-forming potential of lncRNAs relevant to human cardiac differentiation. We demonstrated that the lncRNA with the highest triplex-forming potential, GATA6-AS, forms triple helices in the promoter of genes relevant to cardiac development. Moreover, down-regulation of GATA6-AS impairs GATA6 expression and cardiac development. These data indicate the unique ability of our computational tool to identify novel triplex-forming lncRNAs and their target genes.


Assuntos
Biologia Computacional/métodos , DNA/metabolismo , RNA Longo não Codificante/química , RNA Longo não Codificante/metabolismo , Algoritmos , Sequência de Bases , Sítios de Ligação/genética , DNA/química , Expressão Gênica , Humanos , Conformação de Ácido Nucleico , Ligação Proteica , Fatores de Transcrição/metabolismo
15.
BMC Genomics ; 21(1): 744, 2020 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-33287695

RESUMO

BACKGROUND: Early diagnosis is crucial for effective medical management of cancer patients. Tissue biopsy has been widely used for cancer diagnosis, but its invasive nature limits its application, especially when repeated biopsies are needed. Over the past few years, genomic explorations have led to the discovery of various blood-based biomarkers. Tumor Educated Platelets (TEPs) have, of late, generated considerable interest due to their ability to infer tumor existence and subtype accurately. So far, a majority of the studies involving TEPs have offered marker-panels consisting of several hundreds of genes. Profiling large numbers of genes incur a significant cost, impeding its diagnostic adoption. As such, it is important to construct minimalistic molecular signatures comprising a small number of genes. RESULTS: To address the aforesaid challenges, we analyzed publicly available TEP expression profiles and identified a panel of 11 platelet-genes that reliably discriminates between cancer and healthy samples. To validate its efficacy, we chose non-small cell lung cancer (NSCLC), the most prevalent type of lung malignancy. When applied to platelet-gene expression data from a published study, our machine learning model could accurately discriminate between non-metastatic NSCLC cases and healthy samples. We further experimentally validated the panel on an in-house cohort of metastatic NSCLC patients and healthy controls via real-time quantitative Polymerase Chain Reaction (RT-qPCR) (AUC = 0.97). Model performance was boosted significantly after artificial data-augmentation using the EigenSample method (AUC = 0.99). Lastly, we demonstrated the cancer-specificity of the proposed gene-panel by benchmarking it on platelet transcriptomes from patients with Myocardial Infarction (MI). CONCLUSION: We demonstrated an end-to-end bioinformatic plus experimental workflow for identifying a minimal set of TEP associated marker-genes that are predictive of the existence of cancers. We also discussed a strategy for boosting the predictive model performance by artificial augmentation of gene expression data.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Biomarcadores Tumorais/genética , Plaquetas , Carcinoma Pulmonar de Células não Pequenas/diagnóstico , Carcinoma Pulmonar de Células não Pequenas/genética , Perfilação da Expressão Gênica , Humanos , Neoplasias Pulmonares/diagnóstico , Neoplasias Pulmonares/genética
16.
BMC Genomics ; 21(1): 877, 2020 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-33292182

RESUMO

An amendment to this paper has been published and can be accessed via the original article.

17.
BMC Genomics ; 19(1): 383, 2018 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-29792162

RESUMO

BACKGROUND: The sense of smell is unrivaled in terms of molecular complexity of its input channels. Even zebrafish, a model vertebrate system in many research fields including olfaction, possesses several hundred different olfactory receptor genes, organized in four different gene families. For one of these families, the initially discovered odorant receptors proper, segregation of expression into distinct spatial subdomains within a common sensory surface has been observed both in teleost fish and in mammals. However, for the remaining three families, little to nothing was known about their spatial coding logic. Here we wished to investigate, whether the principle of spatial segregation observed for odorant receptors extends to another olfactory receptor family, the V2R-related OlfC genes. Furthermore we thought to examine, how expression of OlfC genes is integrated into expression zones of odorant receptor genes, which in fish share a single sensory surface with OlfC genes. RESULTS: To select representative genes, we performed a comprehensive phylogenetic study of the zebrafish OlfC family, which identified a novel OlfC gene, reduced the number of pseudogenes to 1, and brought the total family size to 60 intact OlfC receptors. We analyzed the spatial pattern of OlfC-expressing cells for seven representative receptors in three dimensions (height within the epithelial layer, horizontal distance from the center of the olfactory organ, and height within the olfactory organ). We report non-random distributions of labeled neurons for all OlfC genes analysed. Distributions for sparsely expressed OlfC genes are significantly different from each other in nearly all cases, broad overlap notwithstanding. For two of the three coordinates analyzed, OlfC expression zones are intercalated with those of odorant receptor zones, whereas in the third dimension some segregation is observed. CONCLUSION: Our results show that V2R-related OlfC genes follow the same spatial logic of expression as odorant receptors and their expression zones intermingle with those of odorant receptor genes. Thus, distinctly different expression zones for individual receptor genes constitute a general feature shared by teleost and tetrapod V2R/OlfC and odorant receptor families alike.


Assuntos
Perfilação da Expressão Gênica , Receptores Odorantes/genética , Proteínas de Peixe-Zebra/genética , Peixe-Zebra/genética , Animais , Olfato/genética , Peixe-Zebra/fisiologia
18.
Proc Natl Acad Sci U S A ; 110(48): 19579-84, 2013 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-24218586

RESUMO

Carrion smell is strongly repugnant to humans and triggers distinct innate behaviors in many other species. This smell is mainly carried by two small aliphatic diamines, putrescine and cadaverine, which are generated by bacterial decarboxylation of the basic amino acids ornithine and lysine. Depending on the species, these diamines may also serve as feeding attractants, oviposition attractants, or social cues. Behavioral responses to diamines have not been investigated in zebrafish, a powerful model system for studying vertebrate olfaction. Furthermore, olfactory receptors that detect cadaverine and putrescine have not been identified in any species so far. Here, we show robust olfactory-mediated avoidance behavior of zebrafish to cadaverine and related diamines, and concomitant activation of sparse olfactory sensory neurons by these diamines. The large majority of neurons activated by low concentrations of cadaverine expresses a particular olfactory receptor, trace amine-associated receptor 13c (TAAR13c). Structure-activity analysis indicates TAAR13c to be a general diamine sensor, with pronounced selectivity for odd chains of medium length. This receptor can also be activated by decaying fish extracts, a physiologically relevant source of diamines. The identification of a sensitive zebrafish olfactory receptor for these diamines provides a molecular basis for studying neural circuits connecting sensation, perception, and innate behavior.


Assuntos
Comportamento Apetitivo/efeitos dos fármacos , Cadaverina/metabolismo , Putrescina/metabolismo , Receptores Acoplados a Proteínas G/fisiologia , Receptores Odorantes/fisiologia , Peixe-Zebra/fisiologia , Animais , Western Blotting , Cadaverina/química , Cadaverina/farmacologia , Cromatografia Líquida , Clonagem Molecular , Imuno-Histoquímica , Espectrometria de Massas , Filogenia , Putrescina/química , Putrescina/farmacologia , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Receptores Odorantes/genética , Receptores Odorantes/metabolismo
19.
J Biol Chem ; 289(28): 19778-88, 2014 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-24831010

RESUMO

The teleost v1r-related ora genes are a small, highly conserved olfactory receptor gene family of only six genes, whose direct orthologues can be identified in lineages as far as that of cartilaginous fish. However, no ligands for fish olfactory receptor class A related genes (ORA) had been uncovered so far. Here we have deorphanized the ORA1 receptor using heterologous expression and calcium imaging. We report that zebrafish ORA1 recognizes with high specificity and sensitivity 4-hydroxyphenylacetic acid. The carboxyl group of this compound is required in a particular distance from the aromatic ring, whereas the hydroxyl group in the para-position is not essential, but strongly enhances the binding efficacy. Low concentrations of 4-hydroxyphenylacetic acid elicit increases in oviposition frequency in zebrafish mating pairs. This effect is abolished by naris closure. We hypothesize that 4-hydroxyphenylacetic acid might function as a pheromone for reproductive behavior in zebrafish. ORA1 is ancestral to mammalian V1Rs, and its putative function as pheromone receptor is reminiscent of the role of several mammalian V1Rs as pheromone receptors.


Assuntos
Evolução Molecular , Fenilacetatos/metabolismo , Receptores Odorantes/metabolismo , Reprodução/fisiologia , Atrativos Sexuais/metabolismo , Peixe-Zebra/metabolismo , Animais , Células HEK293 , Humanos , Fenilacetatos/farmacologia , Receptores Odorantes/agonistas , Receptores Odorantes/genética , Atrativos Sexuais/farmacologia , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/agonistas , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
20.
J Pharm Bioallied Sci ; 16(Suppl 1): S818-S820, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38595457

RESUMO

Background: The mixed dentition stage in children is a critical period for orthodontic assessment and intervention. This study investigates the effects of interceptive orthodontics on dental and skeletal development in children with mixed dentition, aiming to evaluate the potential benefits of early orthodontic treatment. Materials and Methods: A retrospective analysis was conducted on a cohort of 150 children with mixed dentition (aged 7-11 years), who received interceptive orthodontic treatment. Dental and skeletal records, including cephalometric radiographs and dental cast models, were collected before and after treatment. A control group of 150 untreated children with mixed dentition was also assessed for comparison. Various dental and skeletal parameters, such as dental alignment, overjet (OJ), overbite (OB), and cephalometric measurements, were recorded and analyzed. Results: The results of this study indicate significant improvements in dental alignment and occlusion in the group of children who received interceptive orthodontic treatment. The average reduction in OJ was 3.5 mm, and the OB correction averaged 2.1 mm. Cephalometric analysis showed positive changes in skeletal relationships, with a mean reduction in the angle formed by point A, nasion (N) and point B. (ANB) angle of 2.8 degrees. These improvements were statistically significant compared to the control group (P < 0.05). Conclusion: Early orthodontic intervention, such as interceptive orthodontics, has a positive impact on dental and skeletal development in children with mixed dentition.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA