Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
Int J Mol Sci ; 21(10)2020 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-32455711

RESUMO

Organoids production is a key tool for in vitro studies of physiopathological conditions, drug-induced toxicity assays, and for a potential use in regenerative medicine. Hence, it prompted studies on hepatic organoids and liver regeneration. Numerous attempts to produce hepatic constructs had often limited success due to a lack of viability or functionality. Moreover, most products could not be translated for clinical studies. The aim of this study was to develop functional and viable hepatic constructs using a 3D porous scaffold with an adjustable structure, devoid of any animal component, that could also be used as an in vivo implantable system. We used a combination of pharmaceutical grade pullulan and dextran with different porogen formulations to form crosslinked scaffolds with macroporosity ranging from 30 µm to several hundreds of microns. Polysaccharide scaffolds were easy to prepare and to handle, and allowed confocal observations thanks to their transparency. A simple seeding method allowed a rapid impregnation of the scaffolds with HepG2 cells and a homogeneous cell distribution within the scaffolds. Cells were viable over seven days and form spheroids of various geometries and sizes. Cells in 3D express hepatic markers albumin, HNF4α and CYP3A4, start to polarize and were sensitive to acetaminophen in a concentration-dependant manner. Therefore, this study depicts a proof of concept for organoid production in 3D scaffolds that could be prepared under GMP conditions for reliable drug-induced toxicity studies and for liver tissue engineering.


Assuntos
Dextranos/química , Glucanos/química , Fígado/citologia , Polímeros Responsivos a Estímulos/química , Engenharia Tecidual/métodos , Alicerces Teciduais/química , Citocromo P-450 CYP3A/metabolismo , Células Hep G2 , Fator 4 Nuclear de Hepatócito/metabolismo , Humanos , Organoides/crescimento & desenvolvimento , Organoides/metabolismo , Porosidade
2.
Mar Drugs ; 17(6)2019 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-31207871

RESUMO

(1) Background: Reperfusion injury refers to the cell and tissue damage induced, when blood flow is restored after an ischemic period. While reperfusion reestablishes oxygen supply, it generates a high concentration of radicals, resulting in tissue dysfunction and damage. Here, we aimed to challenge and achieve the potential of a delivery system based on astaxanthin, a natural antioxidant, in attenuating the muscle damage in an animal model of femoral hind-limb ischemia and reperfusion. (2) Methods: The antioxidant capacity and non-toxicity of astaxanthin was validated before and after loading into a polysaccharide scaffold. The capacity of astaxanthin to compensate stress damages was also studied after ischemia induced by femoral artery clamping and followed by varied periods of reperfusion. (3) Results: Histological evaluation showed a positive labeling for CD68 and CD163 macrophage markers, indicating a remodeling process. In addition, higher levels of Nrf2 and NQO1 expression in the sham group compared to the antioxidant group could reflect a reduction of the oxidative damage after 15 days of reperfusion. Furthermore, non-significant differences were observed in non-heme iron deposition in both groups, reflecting a cell population susceptible to free radical damage. (4) Conclusions: Our results suggest that the in situ release of an antioxidant molecule could be effective in improving the antioxidant defenses of ischemia/reperfusion (I/R)-damaged muscles.


Assuntos
Músculo Esquelético/efeitos dos fármacos , Traumatismo por Reperfusão/tratamento farmacológico , Células 3T3 , Animais , Antioxidantes/farmacologia , Linhagem Celular , Modelos Animais de Doenças , Macrófagos/efeitos dos fármacos , Masculino , Camundongos , Estresse Oxidativo/efeitos dos fármacos , Ratos , Xantofilas/farmacologia
3.
Mar Drugs ; 17(12)2019 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-31842319

RESUMO

The adhesion molecule P-selectin is present on the cell surface of both activated endothelium and activated platelets. The present study describes the pharmaceutical development, safety evaluation, and preclinical efficacy of a micro-dosed radiotracer. The macromolecular nanoscale assembly consisted of a natural compound made of a sulfated fucose-rich polysaccharides (fucoidan) and a radionuclide (technetium-99m) for the detection of P-selectin expression in cardiovascular diseases. After extraction and fractionation from brown seaweeds, the good manufacturing practice (GMP) production of a low molecular weight (LMW) fucoidan of 7 kDa was achieved and full physicochemical characterization was performed. The regulatory toxicology study in rats of the GMP batch of LMW fucoidan revealed no adverse effects up to 400 µg/kg (×500 higher than the expected human dose) and pseudoallergy was not seen as well. In a myocardial ischemia-reperfusion model in rats, the GMP-grade LMW fucoidan labeled with technetium-99m detected P-selectin upregulation in vivo. The present study supports the potential of using 99mTc-fucoidan as an imaging agent to detect activated endothelium in humans.


Assuntos
Traumatismo por Reperfusão Miocárdica/diagnóstico por imagem , Selectina-P/metabolismo , Polissacarídeos/administração & dosagem , Tecnécio/administração & dosagem , Animais , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Desenvolvimento de Medicamentos , Feminino , Masculino , Peso Molecular , Polissacarídeos/toxicidade , Compostos Radiofarmacêuticos/administração & dosagem , Compostos Radiofarmacêuticos/toxicidade , Ratos , Ratos Wistar , Suínos
4.
Molecules ; 24(5)2019 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-30857260

RESUMO

A polyol method was used to obtain ultrasmall ZnO nanoparticles (NPs) doped with iron ions and coated with a low molecular weight fucoidan in order to perform in vivo MR and ex vivo fluorescence imaging of athrothrombosis. During the synthesis, the early elimination of water by azeotropic distillation with toluene allowed us to produce NPs which size, determined by XRD and TEM, decreased from 7 nm to 4 nm with the increase of iron/zinc ratios from 0.05 to 0.50 respectively. For the highest iron content (NP-0.50) NPs were evidenced as a mixture of nanocrystals made of wurtzite and cubic phase with a molar ratio of 2.57:1, although it was not possible to distinguish one from the other by TEM. NP-0.50 were superparamagnetic and exhibited a large emission spectrum at 470 nm when excited at 370 nm. After surface functionalization of NP-0.50 with fucoidan (fuco-0.50), the hydrodynamic size in the physiological medium was 162.0 ± 0.4 nm, with a corresponding negative zeta potential of -48.7 ± 0.4 mV, respectively. The coating was evidenced by FT-IR spectra and thermogravimetric analysis. Aqueous suspensions of fuco-0.50 revealed high transverse proton relaxivities (T2) with an r2 value of 173.5 mM-1 s-1 (300 K, 7.0 T) and remained stable for more than 3 months in water or in phosphate buffer saline without evolution of the hydrodynamic size and size distribution. No cytotoxic effect was observed on human endothelial cells up to 48 h with these NPs at a dose of 0.1 mg/mL. After injection into a rat model of atherothrombosis, MR imaging allowed the localization of diseased areas and the subsequent fluorescence imaging of thrombus on tissue slices.


Assuntos
Meios de Contraste/química , Compostos Férricos/química , Nanopartículas/química , Óxido de Zinco/química , Imageamento por Ressonância Magnética , Polissacarídeos/química
5.
J Mater Sci Mater Med ; 29(6): 77, 2018 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-29845352

RESUMO

Hydrogels are very promising for tissue engineering as they provide scaffolds and a suitable microenvironment to control cell behavior and tissue regeneration. We used a patented method to obtain beads of pullulan/dextran cross-linked with sodium trimetaphosphate (STMP), that were already described for in vivo bone repair. The aim of this study was to provide a comparative analysis of microbeads made of polysaccharides prepared using three different STMP feeding ratio of 1.5, 2.25 or 3 % w/w. The morphology, swelling and biodegradability of these structures were assessed. Mesenchymal stem cells were also seeded to evaluate the cell organization onto the beads. We found that the amount of phosphorus resulting from the cross-linking was proportional to the introduced STMP concentration. An increase of cross-linking decreased the in vitro enzymatic degradability, and also decreased the swelling in PBS or water. The microstructures observed by SEM and confocal microscopy indicated that homogeneous spherical microbeads were obtained, except for the lower cross-linking ratio where the shapes were altered. Beads hydrated in PBS exhibited a mean diameter ranging from 400 to 550 µm with the decrease of STMP ratio. Cells adhered to the surface of microbeads even in the absence of protein coating. Cell viability studies revealed an increase in cell numbers over two weeks for the highest cross-linked beads, whereas the two lowest STMP concentrations induced a decrease of cell viability. Overall, this study demonstrated that pullulan/dextran hydrogels can be designed as microbeads with adjustable physicochemical and biological properties to fulfill requirements for tissue engineering approaches.


Assuntos
Reagentes de Ligações Cruzadas/química , Dextranos/química , Glucanos/química , Microesferas , Engenharia Tecidual/métodos , Alicerces Teciduais/química , Animais , Adesão Celular , Linhagem da Célula , Sobrevivência Celular/efeitos dos fármacos , Hidrogéis/química , Células-Tronco Mesenquimais/citologia , Polifosfatos , Polissacarídeos/química , Solventes/química , Suínos , Temperatura
6.
Biochem Biophys Res Commun ; 468(3): 476-84, 2015 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-26129770

RESUMO

Predicting acute clinical events caused by atherosclerotic plaque rupture remains a clinical challenge. Anatomic mapping of the vascular tree provided by standard imaging technologies is not always sufficient for a robust diagnosis. Yet biological mechanisms leading to unstable plaques have been identified and corresponding biomarkers have been described. Nanosystems charged with contrast agents and targeted towards these specific biomarkers have been developed for several types of imaging modalities. The first systems that have reached the clinic are ultrasmall superparamagnetic iron oxides for Magnetic Resonance Imaging. Their potential relies on their passive accumulation by predominant physiological mechanisms in rupture-prone plaques. Active targeting strategies are under development to improve their specificity and set up other types of nanoplatforms. Preclinical results show a huge potential of nanomedicine for cardiovascular diagnosis, as long as the safety of these nanosystems in the body is studied in depth.


Assuntos
Doenças Cardiovasculares/diagnóstico , Técnicas de Diagnóstico Molecular/métodos , Sondas Moleculares/química , Nanomedicina/métodos , Nanopartículas/química , Animais , Biomarcadores/análise , Doenças Cardiovasculares/metabolismo , Humanos , Nanopartículas/ultraestrutura
7.
J Biomed Mater Res A ; 109(10): 1840-1848, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-33797182

RESUMO

Microbeads consisting of pullulan and dextran supplemented with hydroxyapatite have recently been developed for bone tissue engineering applications. Here, we evaluate the bone formation in two different preclinical models after injection of microbeads reconstituted with either saline buffer or autologous blood. Addition of saline solution or autologous blood to dried microbeads packaged into syringes allowed an easy injection. In the first rat bone defect model performed in the femoral condyle, microcomputed tomography performed after 30 and 60 days revealed an important mineralization process occurring around and within the core of the microbeads in both conditions. Bone volume/total volume measurements revealed no significant differences between the saline solution and the autologous blood groups. Histologically, osteoid tissue was evidenced around and in contact of the microbeads in both conditions. Using the sinus lift model performed in sheep, cone beam computed tomography revealed an important mineralization inside the sinus cavity for both groups after 3 months of implantation. Representative Masson trichrome staining images showed that bone formation occurs at the periphery and inside the microbeads in both conditions. Quantitative evaluation of the new bone formation displayed no significant differences between groups. In conclusion, reconstitution of microbeads with autologous blood did not enhance the regenerative capacity of these microbeads compared to the saline buffer group. This study is of particular interest for clinical applications in oral and maxillofacial surgery.


Assuntos
Sangue/metabolismo , Regeneração Óssea/fisiologia , Osso e Ossos/patologia , Osso e Ossos/fisiopatologia , Durapatita/farmacologia , Polímeros/farmacologia , Solução Salina/farmacologia , Animais , Modelos Animais de Doenças , Feminino , Implantes Experimentais , Microesferas , Ratos , Ovinos , Transplante Autólogo , Microtomografia por Raio-X
8.
Mater Sci Eng C Mater Biol Appl ; 106: 110178, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31753413

RESUMO

The present work details the fabrication of electrospun tubular scaffolds based on the biocompatible and unexploited blend of gelatin and polytrimethylene carbonate (PTMC) as a media (middle layer of blood vessel) equivalent for blood vessel regeneration. An attempt to resemble the media stimulated the selection of gelatin as a matrix (substitution for collagen) with the inclusion of the biodegradable elastomer PTMC (substitution for elastin). -The work highlights the variation of electrospinning parameters and its assiduous selection based on fiber diameter distribution and pore size distribution to obtain smooth microfibers and micropores which is reported for the first time for this blend. Electrospun conduits of gelatin-PTMC blend had fibers sized 6-8 µm and pores sized ~100-150 µm. Young's modulus of 0.40 ±â€¯0.045 MPa was observed, resembling the tunica media of the native artery (~0.5 MPa). An evaluation of the surface properties, topography, and mechanical properties validated its physical requirements for inclusion in a vascular graft. Preliminary biological tests confirmed its minimal in-vitro toxicity and in-vivo biocompatibility. MTT assay (indirect) elucidated cell viability above 70% with scaffold extract, considered to be non-toxic according to the EN ISO-10993-5/12 protocol. The in-vivo subcutaneous implantation in rat showed a marked reduction in macrophages within 15 days revealing its biocompatibility and its possibility for host integration. This comprehensive study presents for the first time the potential of microporous electrospun gelatin and PTMC blend based tubular construct as a potential biomaterial for vascular tissue engineering. The proposed media equivalent included in a bilayer or trilayer polymeric construct can be a promising off-shelf vascular graft.


Assuntos
Materiais Biocompatíveis/química , Dioxanos/química , Gelatina/química , Polímeros/química , Resistência à Tração , Engenharia Tecidual/métodos , Alicerces Teciduais/química
9.
Carbohydr Polym ; 245: 116457, 2020 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-32718599

RESUMO

Early detection of thrombotic events remains a big medical challenge. Dextran-based submicronic particles bearing Gd(DOTA) groups and functionalized with fucoidan have been produced via a simple and green water-in-oil emulsification/co-crosslinking process. Their capacity to bind to human activated platelets was evidenced in vitro as well as their cytocompatibility with human endothelial cells. The presence of Gd(DOTA) moieties was confirmed by elemental analysis and total reflection X-ray fluorescence (TRXF) spectrometry. Detailed characterization of particles was performed in terms of size distribution, morphology, and relaxation rates. In particular, longitudinal and transversal proton relaxivities were respectively 1.7 and 5.0 times higher than those of DOTAREM. This study highlights their potential as an MRI diagnostic platform for atherothrombosis.


Assuntos
Plaquetas/química , Meios de Contraste/química , Dextranos/química , Compostos Heterocíclicos/química , Imageamento por Ressonância Magnética/métodos , Nanopartículas/química , Compostos Organometálicos/química , Ativação Plaquetária , Polissacarídeos/química , Adulto , Células Cultivadas , Reagentes de Ligações Cruzadas/química , Emulsões/química , Gadolínio/química , Voluntários Saudáveis , Compostos Heterocíclicos com 1 Anel/química , Células Endoteliais da Veia Umbilical Humana , Humanos , Substâncias Macromoleculares/química , Tamanho da Partícula , Espectrometria por Raios X/métodos , Trombose/diagnóstico
10.
Biomaterials ; 194: 139-150, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30593939

RESUMO

Thrombotic diseases rarely cause symptoms until advanced stage and sudden death. Thus, early detection of thrombus by a widely spread imaging modality can improve the prognosis and reduce mortality. Here, polymer microbubbles (MBs) made of degradable poly(IsoButylCyanoAcrylate) and functionalized with fucoidan (Fucoidan-MBs) were designed as a new targeted ultrasound contrast agent to image venous thrombus. The physicochemical characterizations demonstrate that the MBs with fucoidan surface exhibit a size of 2-6 µm and stability in suspension at 4 °C up to 2 months. MBs exhibit high echogenicity and could be completely burst under high destructive pulse. Flow chamber experiments on activated human platelets show a higher affinity of Fucoidan-MBs than control anionic MBs (CM-Dextran-MBs) under shear stress conditions. In vivo analysis by ultrasound and histological results demonstrate that Fucoidan-MBs are localized in rat venous thrombotic wall, whereas few CM-Dextran-MBs are present. In addition, the binding of Fucoidan-MBs in healthy vein is not observed. Collectively, Fucoidan-MBs appear as a promising functionalized carrier for ultrasound molecular imaging in thrombotic diseases.


Assuntos
Meios de Contraste/química , Microbolhas , Selectina-P/análise , Trombose/diagnóstico por imagem , Células 3T3 , Animais , Bucrilato/química , Masculino , Camundongos , Imagem Molecular/métodos , Polissacarídeos/química , Ratos Wistar , Ultrassonografia/métodos
11.
Sci Rep ; 9(1): 19560, 2019 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-31863037

RESUMO

There is a need for new targets to specifically localize inflammatory foci, usable in a wide range of organs. Here, we hypothesized that the cleaved molecular form of CD31 is a suitable target for molecular imaging of inflammation. We evaluated a bioconjugate of D-P8RI, a synthetic peptide that binds all cells with cleaved CD31, in an experimental rat model of sterile acute inflammation. Male Wistar rats were injected with turpentine oil into the gastrocnemius muscle two days before 99mTc-HYNIC-D-P8RI (or its analogue with L-Proline) SPECT/CT or [18F]FDG PET/MRI. Biodistribution, stability study, histology, imaging and autoradiography of 99mTc-HYNIC-D-P8RI were further performed. Biodistribution studies revealed rapid elimination of 99mTc-HYNIC-D-P8RI through renal excretion with almost no uptake from most organs and excellent in vitro and in vivo stability were observed. SPECT/CT imaging showed a significant higher 99mTc-HYNIC-D-P8RI uptake compared with its analogue with L-Proline (negative control) and no significant difference compared with [18F]FDG (positive control). Moreover, autoradiography and histology revealed a co-localization between 99mTc-HYNIC-D-P8RI uptake and inflammatory cell infiltration. 99mTc-HYNIC-D-P8RI constitutes a new tool for the detection and localization of inflammatory sites. Our work suggests that targeting cleaved CD31 is an attractive strategy for the specific in vivo imaging of inflammatory processes.


Assuntos
Inflamação/diagnóstico por imagem , Molécula-1 de Adesão Celular Endotelial a Plaquetas/análise , Animais , Autorradiografia , Cromatografia em Gel , Cromatografia Líquida de Alta Pressão , Imageamento por Ressonância Magnética , Masculino , Microscopia de Fluorescência , Tomografia por Emissão de Pósitrons , Ligação Proteica , Ratos , Ratos Wistar , Tomografia Computadorizada com Tomografia Computadorizada de Emissão de Fóton Único
12.
Biomaterials ; 156: 204-216, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29216534

RESUMO

Injection of recombinant tissue plasminogen activator (rt-PA) is the standard drug treatment for thrombolysis. However, rt-PA shows risk of hemorrhages and limited efficiency even at high doses. Polysaccharide-poly(isobutylcyanoacrylate) nanoparticles functionalized with fucoidan and loaded with rt-PA were designed to accumulate on the thrombus. Fucoidan has a nanomolar affinity for the P-selectin expressed by activated platelets in the thrombus. Solid spherical fluorescent nanoparticles with a hydrodynamic diameter of 136 ± 4 nm were synthesized by redox radical emulsion polymerization. The clinical rt-PA formulation was successfully loaded by adsorption on aminated nanoparticles and able to be released in vitro. We validated the in vitro fibrinolytic activity and binding under flow to both recombinant P-selectin and activated platelet aggregates. The thrombolysis efficiency was demonstrated in a mouse model of venous thrombosis by monitoring the platelet density with intravital microscopy. This study supports the hypothesis that fucoidan-nanoparticles improve the rt-PA efficiency. This work establishes the proof-of-concept of fucoidan-based carriers for targeted thrombolysis.


Assuntos
Nanopartículas/química , Selectina-P/antagonistas & inibidores , Polímeros/química , Polissacarídeos/química , Terapia Trombolítica , Animais , Modelos Animais de Doenças , Liberação Controlada de Fármacos , Hemorreologia/efeitos dos fármacos , Masculino , Camundongos Endogâmicos C57BL , Nanopartículas/ultraestrutura , Agregação Plaquetária/efeitos dos fármacos , Distribuição Tecidual/efeitos dos fármacos , Ativador de Plasminogênio Tecidual/farmacologia , Ativador de Plasminogênio Tecidual/uso terapêutico , Tomografia Computadorizada de Emissão de Fóton Único , Tomografia Computadorizada por Raios X , Trombose Venosa/patologia , Trombose Venosa/terapia
13.
Int J Biol Macromol ; 107(Pt B): 1922-1935, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29032216

RESUMO

The present work deals with the fabrication of electrospun tubular scaffold based on in-situ crosslinked blend of gelatin - oxidized carboxymethyl cellulose (OCMC) for vascular tissue engineering. The flow behavior and spinability of the hydrogel despite the in-situ crosslinked gelatin chains evaluated by Raman spectroscopic studies and rheological studies was utilized for electrospinning. The study highlights the tunable pore size and fiber diameter of the nanofibers with the manipulation of electrospinning parameters. With a future perspective of vascular tissue engineering, the electrospinning parameters yielding smooth bead free fibers and maximum magnitude in pore size and fiber diameter as well their homogenous distribution were selected for the fabrication of tubular constructs which is rarely reported. The surface and mechanical properties were evaluated to validate its properties to the native vessel. Biocompatibility was studied in vitro with BALB/c 3T3 cells and in vivo after subcutaneous implantation in rats. MTT assay confirmed its no-toxicity and no abnormal foreign body reaction were observed by 7 and 15days after implantation. Crosslinking with biocompatible crosslinker OCMC has rendered insolubility to gelatin yet making it spinable for electrospinning to fabricate porous, nanofibrous vascular biomaterial.


Assuntos
Vasos Sanguíneos/fisiologia , Carboximetilcelulose Sódica/química , Gelatina/química , Engenharia Tecidual/métodos , Alicerces Teciduais/química , Células 3T3 , Animais , Sobrevivência Celular , Reagentes de Ligações Cruzadas/química , Módulo de Elasticidade , Eletricidade , Masculino , Camundongos , Nanofibras/química , Oxirredução , Ratos Wistar , Reologia , Rotação , Análise Espectral Raman , Tela Subcutânea , Propriedades de Superfície , Sus scrofa , Resistência à Tração , Viscosidade
14.
Adv Healthc Mater ; 6(4)2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27943662

RESUMO

New tools for molecular imaging and targeted therapy for cardiovascular diseases are still required. Herein, biodegradable microcapsules (MCs) made of polycyanoacrylate and polysaccharide and functionalized with fucoidan (Fuco-MCs) are designed as new carriers to target arterial thrombi overexpressing P-selectin. Physicochemical characterizations demonstrated that microcapsules have a core-shell structure and that fucoidan is present onto the surface of Fuco-MCs. Furthermore, their sizes range from 2 to 6 µm and they are stable on storage over 30 d at 4 °C. Flow cytometry experiments evidenced the binding of Fuco-MCs for human activated platelets as compared to MCs (mean fluorescence intensity: 12 008 vs. 9, p < 0.001) and its absence for nonactivated platelets (432). An in vitro flow adhesion assay showed high specific binding efficiency of Fuco-MCs to P-selectin and to activated platelet aggregates under arterial shear stress conditions. Moreover, both types of microcapsules reveal excellent compatibility with 3T3 cells in cytotoxicity assay. One hour after intravenous injection of microcapsules, histological analysis revealed that Fuco-MCs are localized in the rat abdominal aortic aneurysm thrombotic wall and that the binding in the healthy aorta is low. In conclusion, these microcapsules appear as promising carriers for targeting of tissues characterized by P-selectin overexpression and for their molecular imaging or treatment.


Assuntos
Aneurisma da Aorta Abdominal , Sistemas de Liberação de Medicamentos/métodos , Imagem Molecular/métodos , Selectina-P/metabolismo , Polissacarídeos , Trombose , Células 3T3 , Animais , Aneurisma da Aorta Abdominal/diagnóstico por imagem , Aneurisma da Aorta Abdominal/metabolismo , Cápsulas , Modelos Animais de Doenças , Humanos , Masculino , Camundongos , Polissacarídeos/química , Polissacarídeos/farmacocinética , Polissacarídeos/farmacologia , Ratos , Ratos Wistar , Trombose/diagnóstico por imagem , Trombose/metabolismo
15.
Sci Rep ; 7(1): 6100, 2017 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-28733632

RESUMO

Magnetic Resonance Imaging (MRI) appears as a good surrogate to Computed Tomography (CT) scan as it does not involve radiation. In this context, a 3D anatomical and perfusion MR imaging protocol was developed to follow the evolution of bone regeneration and the neo-vascularization in femoral bone defects in rats. For this, three different biomaterials based on Pullulan-Dextran and containing either Fucoidan or HydroxyApatite or both were implanted. In vivo MRI, ex vivo micro-CT and histology were performed 1, 3 and 5 weeks after implantation. The high spatially resolved (156 × 182 × 195 µm) anatomical images showed a high contrast from the defects filled with biomaterials that decreased over time due to bone formation. The 3D Dynamic Contrast Enhanced (DCE) imaging with high temporal resolution (1 image/19 s) enabled to detect a modification in the Area-Under-The-Gadolinium-Curve over the weeks post implantation. The high sensitivity of MRI enabled to distinguish which biomaterial was the least efficient for bone regeneration, which was confirmed by micro-CT images and by a lower vessel density observed by histology. In conclusion, the methodology developed here highlights the efficiency of longitudinal MRI for tissue engineering as a routine small animal exam.


Assuntos
Materiais Biocompatíveis , Regeneração Óssea , Fêmur , Imageamento Tridimensional , Angiografia por Ressonância Magnética , Animais , Biomarcadores , Modelos Animais de Doenças , Feminino , Fêmur/diagnóstico por imagem , Fêmur/lesões , Fêmur/patologia , Imuno-Histoquímica , Angiografia por Ressonância Magnética/métodos , Ratos , Engenharia Tecidual , Microtomografia por Raio-X
16.
J Biomed Mater Res B Appl Biomater ; 105(7): 2001-2009, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-27367361

RESUMO

The development of new vascular devices requires to study the effects of materials on blood cells and on coagulation, both in vitro and in vivo. In this study, we have developed a new material by grafting dermatan sulfate (DS) from shark skin onto polyethylene terephthalate (PET). We have evaluated the haemocompatibility of PET-DS material in vitro by measuring thrombin generation, plasma recalcification time, hemolytic activity, and platelet adhesion and in vivo with a model of vascular patch in rat abdominal aorta. In vitro, our results have shown that PET-DS is a nonhemolytic material, able to inhibit thrombin generation and platelet adhesion. In vivo studies by Doppler echographic evaluation 20 days after implantation have shown that the PET-DS patch was integrated in the vessel wall and covered by a layer of cells. In conclusion, PET-DS has good haemocompatibility properties and could be a promising tool for vascular surgery. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 2001-2009, 2017.


Assuntos
Aorta Abdominal/cirurgia , Plaquetas/metabolismo , Dermatan Sulfato/farmacologia , Teste de Materiais , Adesividade Plaquetária/efeitos dos fármacos , Tubarões , Pele/química , Animais , Aorta Abdominal/metabolismo , Aorta Abdominal/patologia , Dermatan Sulfato/química , Humanos , Masculino , Ratos , Ratos Wistar
17.
EJNMMI Res ; 7(1): 40, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28470406

RESUMO

BACKGROUND: Atherosclerotic plaque phenotypes are classified based on the extent of macrophage infiltration into the lesions, and the presence of certain macrophage subsets might be a sign for plaque vulnerability. The mannose receptor (MR) is over-expressed in activated macrophages. Tilmanocept is a tracer that targets MR and is approved in Europe and the USA for the detection of sentinel lymph nodes. In this study, our aim was to evaluate the potential of 111In-labelled tilmanocept for the detection of MR-positive macrophages in atherosclerotic plaques of apolipoprotein E-knockout (ApoE-KO) mouse model. METHODS: Tilmanocept was labelled with 111In. The labelling stability and biodistribution of the tracer was first evaluated in control mice (n = 10) 1 h post injection (p.i.). For in vivo imaging studies, 111In-tilmanocept was injected into ApoE-KO (n = 8) and control (n = 8) mice intravenously (i.v.). The mice were scanned 90 min p.i. using a dedicated animal SPECT/CT. For testing the specificity of 111In-tilmanocept uptake in plaques, a group of ApoE-KO mice was co-injected with excess amount of non-labelled tilmanocept. For ex vivo imaging studies, the whole aortas (n = 9 from ApoE-KO and n = 4 from control mice) were harvested free from adventitial tissue for Sudan IV staining and autoradiography. Cryosections were prepared for immunohistochemistry (IHC). RESULTS: 111In radiolabelling of tilmanocept provided a yield of greater than 99%. After i.v. injection, 111In-tilmanocept accumulated in vivo in MR-expressing organs (i.e. liver and spleen) and showed only low residual blood signal 1 h p.i. MR-binding specificity in receptor-positive organs was demonstrated by a 1.5- to 3-fold reduced uptake of 111In-tilmanocept after co-injection of a blocking dose of non-labelled tilmanocept. Focal signal was detected in atherosclerotic plaques of ApoE-KO mice, whereas no signal was detected in the aortas of control mice. 111In-tilmanocept uptake was detected in atherosclerotic plaques on autoradiography correlating well with Sudan IV-positive areas and associating with subendothelial accumulations of MR-positive macrophages as demonstrated by IHC. CONCLUSIONS: After i.v. injection, 111In-tilmanocept accumulated in MR-expressing organs and was associated with only low residual blood signal. In addition, 111In-tilmanocept uptake was detected in atherosclerotic plaques of mice containing MR-expressing macrophages suggesting that tilmanocept represents a promising tracer for the non-invasive detection of macrophages in atherosclerotic plaques.

18.
Biomaterials ; 84: 184-195, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26828683

RESUMO

Poly(vinyl alcohol) hydrogel (PVA) is a widely used material for biomedical devices, yet there is a need to enhance its biological functionality for in vitro and in vivo vascular application. Significance of surface topography in modulating cellular behaviour is increasingly evident. However, hydrogel patterning remains challenging. Using a casting method, planar PVA were patterned with micro-sized features. To achieve higher patterning resolution, nanoimprint lithography with high pressure and temperature was used. In vitro experiment showed enhanced human endothelial cell (EC) density and adhesion on patterned PVA. Additional chemical modification via nitrogen gas plasma on patterned PVA further improved EC density and adhesion. Only EC monolayer grown on plasma modified PVA with 2 µm gratings and 1.8 µm concave lens exhibited expression of vascular endothelial cadherin, indicating EC functionality. Patterning of the luminal surface of tubular hydrogels is not widely explored. The study presents the first method for simultaneous tubular molding and luminal surface patterning of hydrogel. PVA graft with 2 µm gratings showed patency and endothelialization, while unpatterned grafts were occluded after 20 days in rat aorta. The reproducible, high yield and high-fidelity methods enable planar and tubular patterning of PVA and other hydrogels to be used for biomedical applications.


Assuntos
Células Endoteliais da Veia Umbilical Humana/citologia , Hidrogel de Polietilenoglicol-Dimetacrilato/farmacologia , Nanopartículas/química , Nanotecnologia/métodos , Álcool de Polivinil/farmacologia , Animais , Adesão Celular , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Humanos , Implantes Experimentais , Masculino , Impressão Molecular , Espectroscopia Fotoeletrônica , Gases em Plasma/química , Impressão , Ratos Wistar , Propriedades de Superfície
19.
Drug Deliv Transl Res ; 5(2): 187-97, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25787743

RESUMO

The aim of this study was to functionalize 3D porous cross-linked scaffolds with natural non-animal sulfated polysaccharide fucoidans in order to allow a delivery of vascular endothelial growth factor (VEGF) and potentiate its angiogenic activity. Microporous (20 µm) and macroporous (200 µm) scaffolds were functionalized with low, medium, or high molecular weight fucoidans (named LMWF, MMWF, and HMWF, respectively). In vitro, addition of fucoidans promoted endothelial progenitor cells proliferation in both micro- and macroporous scaffolds. While control scaffolds without fucoidans loaded with VEGF165 (100 ng) showed a fast burst release in PBS during the first 24 h, MMWF significantly reduced the VEGF165 release (p < 0.001). Surface plasmon resonance experiments confirmed a direct interaction between MMWF and VEGF165, characterized by an affinity K D (K d/K a) of 1 × 10(-9) M. In a subcutaneous angiogenesis model in mice, fucoidan functionalized scaffolds showed a more intense vascularization response than control groups. Expression of isolectin-B4 and α-smooth muscle actin, as well as confinement of erythrocytes, demonstrated the neoformed blood vessels functionality. There was a significant difference in neovessel area and neovessel density between MMWF scaffolds or VEGF165 scaffolds and MMWF+VEGF165 scaffolds (p < 0.001 for all cases). Here, we demonstrate that fucoidan sequesters VEGF165 and delivers biological cues promoting angiogenesis. In conclusion, this study shows that hydrogels functionalized with fucoidan can direct the formation of mature vasculature through a local release of VEGF165 and can be a useful tool in ischemic tissues to guide therapeutic angiogenesis.


Assuntos
Neovascularização Fisiológica/efeitos dos fármacos , Alicerces Teciduais , Fator A de Crescimento do Endotélio Vascular/administração & dosagem , Animais , Células Cultivadas , Dextranos/química , Glucanos/química , Humanos , Hidrogéis/química , Masculino , Camundongos Endogâmicos C57BL , Polissacarídeos/química , Porosidade , Células-Tronco
20.
Biomater Sci ; 2(6): 843-852, 2014 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-32481817

RESUMO

Vascularization of tissue-engineered constructs is critical for proper cell and graft survival. In order to achieve this, pro-angiogenic factors, such as vascular endothelial growth factor (VEGF), are often incorporated into scaffolds by methods that either involve multiple steps or risk compromising protein bioactivity. In this study, we demonstrate a simple approach to incorporate VEGF into polysaccharide electrospun fibers by taking advantage of the interactions between VEGF and sulfated polysaccharide, fucoidan. Pullulan/dextran (P/D) electrospun fibers (diameter ∼500 nm) incorporating fucoidan were fabricated by a one-step electrospinning process. Thereafter, VEGF was loaded onto the scaffolds. By varying the content of the chemical crosslinker, trisodium trimetaphosphate (STMP), from 10 to 12 and 16 wt% (denoted as STMP10, 12 and 16 respectively), the extent of fucoidan incorporation was significantly enhanced (<2.5 mg g-1 for STMP10 vs. 5 mg g-1 for STMP12 and 16). In addition, increased fucoidan content resulted in prolonged retention of VEGF bioactivity (≥14 days for STMP12 and 16 vs. 3 days for STMP10 and 1 day for VEGF by bolus delivery). Subcutaneous implantation of P/D scaffolds in mice demonstrated enhanced angiogenic response towards fucoidan and VEGF loaded scaffolds at 14 days post-implantation. In addition, P/D constructs supported rapid cellular infiltration and complete biodegradation of the scaffolds was observed at 7 days post-implantation. Taken together, the results demonstrate the potential of P/D electrospun fibers endowed with fucoidan as tunable reservoirs for the effective delivery of VEGF to control vascularization of tissue-engineered constructs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA