Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 178(5): 1145-1158.e20, 2019 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-31402173

RESUMO

While Mediator plays a key role in eukaryotic transcription, little is known about its mechanism of action. This study combines CRISPR-Cas9 genetic screens, degron assays, Hi-C, and cryoelectron microscopy (cryo-EM) to dissect the function and structure of mammalian Mediator (mMED). Deletion analyses in B, T, and embryonic stem cells (ESC) identified a core of essential subunits required for Pol II recruitment genome-wide. Conversely, loss of non-essential subunits mostly affects promoters linked to multiple enhancers. Contrary to current models, however, mMED and Pol II are dispensable to physically tether regulatory DNA, a topological activity requiring architectural proteins. Cryo-EM analysis revealed a conserved core, with non-essential subunits increasing structural complexity of the tail module, a primary transcription factor target. Changes in tail structure markedly increase Pol II and kinase module interactions. We propose that Mediator's structural pliability enables it to integrate and transmit regulatory signals and act as a functional, rather than an architectural bridge, between promoters and enhancers.


Assuntos
Complexo Mediador/metabolismo , RNA Polimerase II/metabolismo , Animais , Linfócitos T CD4-Positivos/citologia , Linfócitos T CD4-Positivos/metabolismo , Sistemas CRISPR-Cas/genética , Proteínas de Ciclo Celular/metabolismo , Células Cultivadas , Proteínas Cromossômicas não Histona/metabolismo , Microscopia Crioeletrônica , Elementos Facilitadores Genéticos , Edição de Genes , Humanos , Masculino , Complexo Mediador/química , Complexo Mediador/genética , Camundongos , Camundongos Endogâmicos C57BL , Células-Tronco Embrionárias Murinas/citologia , Células-Tronco Embrionárias Murinas/metabolismo , Regiões Promotoras Genéticas , Estrutura Quaternária de Proteína , RNA Polimerase II/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Coesinas
2.
Cell ; 173(5): 1165-1178.e20, 2018 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-29706548

RESUMO

Cohesin extrusion is thought to play a central role in establishing the architecture of mammalian genomes. However, extrusion has not been visualized in vivo, and thus, its functional impact and energetics are unknown. Using ultra-deep Hi-C, we show that loop domains form by a process that requires cohesin ATPases. Once formed, however, loops and compartments are maintained for hours without energy input. Strikingly, without ATP, we observe the emergence of hundreds of CTCF-independent loops that link regulatory DNA. We also identify architectural "stripes," where a loop anchor interacts with entire domains at high frequency. Stripes often tether super-enhancers to cognate promoters, and in B cells, they facilitate Igh transcription and recombination. Stripe anchors represent major hotspots for topoisomerase-mediated lesions, which promote chromosomal translocations and cancer. In plasmacytomas, stripes can deregulate Igh-translocated oncogenes. We propose that higher organisms have coopted cohesin extrusion to enhance transcription and recombination, with implications for tumor development.


Assuntos
Trifosfato de Adenosina/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Genoma , Animais , Linfócitos B/citologia , Linfócitos B/metabolismo , Fator de Ligação a CCCTC/genética , Fator de Ligação a CCCTC/metabolismo , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/genética , Linhagem Celular , Proteoglicanas de Sulfatos de Condroitina/genética , Proteoglicanas de Sulfatos de Condroitina/metabolismo , Cromatina/metabolismo , Proteínas Cromossômicas não Histona/química , Proteínas Cromossômicas não Histona/genética , Cromossomos/metabolismo , Proteínas de Ligação a DNA , Humanos , Camundongos , Mutagênese , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Transcrição Gênica , Coesinas
3.
Cell ; 170(3): 507-521.e18, 2017 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-28735753

RESUMO

In this study, we show that evolutionarily conserved chromosome loop anchors bound by CCCTC-binding factor (CTCF) and cohesin are vulnerable to DNA double strand breaks (DSBs) mediated by topoisomerase 2B (TOP2B). Polymorphisms in the genome that redistribute CTCF/cohesin occupancy rewire DNA cleavage sites to novel loop anchors. While transcription- and replication-coupled genomic rearrangements have been well documented, we demonstrate that DSBs formed at loop anchors are largely transcription-, replication-, and cell-type-independent. DSBs are continuously formed throughout interphase, are enriched on both sides of strong topological domain borders, and frequently occur at breakpoint clusters commonly translocated in cancer. Thus, loop anchors serve as fragile sites that generate DSBs and chromosomal rearrangements. VIDEO ABSTRACT.


Assuntos
Fragilidade Cromossômica , Quebras de DNA de Cadeia Dupla , Neoplasias/genética , Animais , Linfócitos B/metabolismo , Fator de Ligação a CCCTC , Linhagem Celular Tumoral , DNA Topoisomerases Tipo II/metabolismo , Proteínas de Ligação a DNA/metabolismo , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Proteínas de Ligação a Poli-ADP-Ribose , Proteínas Repressoras/metabolismo
4.
Cell ; 171(2): 305-320.e24, 2017 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-28985562

RESUMO

The human genome folds to create thousands of intervals, called "contact domains," that exhibit enhanced contact frequency within themselves. "Loop domains" form because of tethering between two loci-almost always bound by CTCF and cohesin-lying on the same chromosome. "Compartment domains" form when genomic intervals with similar histone marks co-segregate. Here, we explore the effects of degrading cohesin. All loop domains are eliminated, but neither compartment domains nor histone marks are affected. Loss of loop domains does not lead to widespread ectopic gene activation but does affect a significant minority of active genes. In particular, cohesin loss causes superenhancers to co-localize, forming hundreds of links within and across chromosomes and affecting the regulation of nearby genes. We then restore cohesin and monitor the re-formation of each loop. Although re-formation rates vary greatly, many megabase-sized loops recovered in under an hour, consistent with a model where loop extrusion is rapid.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Núcleo Celular/genética , Proteínas Cromossômicas não Histona/metabolismo , Cromossomos/metabolismo , Genoma Humano , Proteínas Repressoras/metabolismo , Fator de Ligação a CCCTC , Linhagem Celular Tumoral , Proteínas de Ligação a DNA , Elementos Facilitadores Genéticos , Código das Histonas , Humanos , Proteínas Nucleares/metabolismo , Nucleossomos/metabolismo , Fosfoproteínas/metabolismo , Coesinas
5.
Cell ; 162(4): 708-11, 2015 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-26276627

RESUMO

We discuss how principles of nuclear architecture drive typical gene rearrangements in B lymphocytes, whereas translocation hot spots and recurrent lesions reflect the extent of AID-mediated DNA damage and selection.


Assuntos
Linfócitos B/metabolismo , Núcleo Celular/metabolismo , Rearranjo Gênico do Linfócito B , Animais , Linfócitos B/citologia , Fator de Ligação a CCCTC , Núcleo Celular/genética , Humanos , Ativação Linfocitária , Proteínas Repressoras/metabolismo , Recombinação V(D)J
6.
Nature ; 629(8010): 127-135, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38658750

RESUMO

Phenotypic variation among species is a product of evolutionary changes to developmental programs1,2. However, how these changes generate novel morphological traits remains largely unclear. Here we studied the genomic and developmental basis of the mammalian gliding membrane, or patagium-an adaptative trait that has repeatedly evolved in different lineages, including in closely related marsupial species. Through comparative genomic analysis of 15 marsupial genomes, both from gliding and non-gliding species, we find that the Emx2 locus experienced lineage-specific patterns of accelerated cis-regulatory evolution in gliding species. By combining epigenomics, transcriptomics and in-pouch marsupial transgenics, we show that Emx2 is a critical upstream regulator of patagium development. Moreover, we identify different cis-regulatory elements that may be responsible for driving increased Emx2 expression levels in gliding species. Lastly, using mouse functional experiments, we find evidence that Emx2 expression patterns in gliders may have been modified from a pre-existing program found in all mammals. Together, our results suggest that patagia repeatedly originated through a process of convergent genomic evolution, whereby regulation of Emx2 was altered by distinct cis-regulatory elements in independently evolved species. Thus, different regulatory elements targeting the same key developmental gene may constitute an effective strategy by which natural selection has harnessed regulatory evolution in marsupial genomes to generate phenotypic novelty.


Assuntos
Evolução Molecular , Proteínas de Homeodomínio , Locomoção , Marsupiais , Fatores de Transcrição , Animais , Feminino , Masculino , Camundongos , Epigenômica , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Genoma/genética , Genômica , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Locomoção/genética , Marsupiais/anatomia & histologia , Marsupiais/classificação , Marsupiais/genética , Marsupiais/crescimento & desenvolvimento , Filogenia , Sequências Reguladoras de Ácido Nucleico/genética , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Fenótipo , Humanos
7.
Mol Cell ; 82(5): 1021-1034.e8, 2022 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-35182478

RESUMO

How the splicing machinery defines exons or introns as the spliced unit has remained a puzzle for 30 years. Here, we demonstrate that peripheral and central regions of the nucleus harbor genes with two distinct exon-intron GC content architectures that differ in the splicing outcome. Genes with low GC content exons, flanked by long introns with lower GC content, are localized in the periphery, and the exons are defined as the spliced unit. Alternative splicing of these genes results in exon skipping. In contrast, the nuclear center contains genes with a high GC content in the exons and short flanking introns. Most splicing of these genes occurs via intron definition, and aberrant splicing leads to intron retention. We demonstrate that the nuclear periphery and center generate different environments for the regulation of alternative splicing and that two sets of splicing factors form discrete regulatory subnetworks for the two gene architectures. Our study connects 3D genome organization and splicing, thus demonstrating that exon and intron definition modes of splicing occur in different nuclear regions.


Assuntos
Processamento Alternativo , Splicing de RNA , Composição de Bases , Éxons/genética , Íntrons/genética
8.
Cell ; 159(7): 1665-80, 2014 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-25497547

RESUMO

We use in situ Hi-C to probe the 3D architecture of genomes, constructing haploid and diploid maps of nine cell types. The densest, in human lymphoblastoid cells, contains 4.9 billion contacts, achieving 1 kb resolution. We find that genomes are partitioned into contact domains (median length, 185 kb), which are associated with distinct patterns of histone marks and segregate into six subcompartments. We identify ∼10,000 loops. These loops frequently link promoters and enhancers, correlate with gene activation, and show conservation across cell types and species. Loop anchors typically occur at domain boundaries and bind CTCF. CTCF sites at loop anchors occur predominantly (>90%) in a convergent orientation, with the asymmetric motifs "facing" one another. The inactive X chromosome splits into two massive domains and contains large loops anchored at CTCF-binding repeats.


Assuntos
Núcleo Celular/genética , Cromatina/química , Genoma Humano , Animais , Fator de Ligação a CCCTC , Linhagem Celular , Núcleo Celular/química , Regulação da Expressão Gênica , Código das Histonas , Humanos , Camundongos , Conformação Molecular , Sequências Reguladoras de Ácido Nucleico , Proteínas Repressoras/metabolismo
10.
Mol Cell ; 78(3): 506-521.e6, 2020 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-32386543

RESUMO

Higher-order chromatin structure and DNA methylation are implicated in multiple developmental processes, but their relationship to cell state is unknown. Here, we find that large (>7.3 kb) DNA methylation nadirs (termed "grand canyons") can form long loops connecting anchor loci that may be dozens of megabases (Mb) apart, as well as inter-chromosomal links. The interacting loci cover a total of ∼3.5 Mb of the human genome. The strongest interactions are associated with repressive marks made by the Polycomb complex and are diminished upon EZH2 inhibitor treatment. The data are suggestive of the formation of these loops by interactions between repressive elements in the loci, forming a genomic subcompartment, rather than by cohesion/CTCF-mediated extrusion. Interestingly, unlike previously characterized subcompartments, these interactions are present only in particular cell types, such as stem and progenitor cells. Our work reveals that H3K27me3-marked large DNA methylation grand canyons represent a set of very-long-range loops associated with cellular identity.


Assuntos
Cromatina/química , Cromatina/genética , Metilação de DNA , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/fisiologia , Fator de Ligação a CCCTC/genética , Fator de Ligação a CCCTC/metabolismo , Diferenciação Celular , Cromatina/metabolismo , Proteína Potenciadora do Homólogo 2 de Zeste/genética , Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo , Epigênese Genética , Regulação da Expressão Gênica , Histonas/genética , Histonas/metabolismo , Proteínas de Homeodomínio/genética , Humanos , Hibridização in Situ Fluorescente , Lisina/genética , Lisina/metabolismo , Proteínas Nucleares/genética , Fatores de Transcrição SOXB1/genética , Proteína de Homoeobox de Baixa Estatura/genética , Fatores de Transcrição/genética
11.
Am J Hum Genet ; 109(11): 2049-2067, 2022 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-36283406

RESUMO

Point mutations and structural variants that directly disrupt the coding sequence of MEF2C have been associated with a spectrum of neurodevelopmental disorders (NDDs). However, the impact of MEF2C haploinsufficiency on neurodevelopmental pathways and synaptic processes is not well understood, nor are the complex mechanisms that govern its regulation. To explore the functional changes associated with structural variants that alter MEF2C expression and/or regulation, we generated an allelic series of 204 isogenic human induced pluripotent stem cell (hiPSC)-derived neural stem cells and glutamatergic induced neurons. These neuronal models harbored CRISPR-engineered mutations that involved direct deletion of MEF2C or deletion of the boundary points for topologically associating domains (TADs) and chromatin loops encompassing MEF2C. Systematic profiling of mutation-specific alterations, contrasted to unedited controls that were exposed to the same guide RNAs for each edit, revealed that deletion of MEF2C caused differential expression of genes associated with neurodevelopmental pathways and synaptic function. We also discovered significant reduction in synaptic activity measured by multielectrode arrays (MEAs) in neuronal cells. By contrast, we observed robust buffering against MEF2C regulatory disruption following deletion of a distal 5q14.3 TAD and loop boundary, whereas homozygous loss of a proximal loop boundary resulted in down-regulation of MEF2C expression and reduced electrophysiological activity on MEA that was comparable to direct gene disruption. Collectively, these studies highlight the considerable functional impact of MEF2C deletion in neuronal cells and systematically characterize the complex interactions that challenge a priori predictions of regulatory consequences from structural variants that disrupt three-dimensional genome organization.


Assuntos
Células-Tronco Pluripotentes Induzidas , Células-Tronco Neurais , Humanos , Genoma , Haploinsuficiência , Fatores de Transcrição MEF2/genética , Neurônios , Transcrição Gênica
12.
Genome Res ; 32(4): 643-655, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35177558

RESUMO

The occurrence and formation of genomic structural variants (SVs) is known to be influenced by the 3D chromatin architecture, but the extent and magnitude have been challenging to study. Here, we apply Hi-C to study chromatin organization before and after induction of chromothripsis in human cells. We use Hi-C to manually assemble the derivative chromosomes following the occurrence of massive complex rearrangements, which allows us to study the sources of SV formation and their consequences on gene regulation. We observe an action-reaction interplay whereby the 3D chromatin architecture directly impacts the location and formation of SVs. In turn, the SVs reshape the chromatin organization to alter the local topologies, replication timing, and gene regulation in cis We show that SVs have a strong tendency to occur between similar chromatin compartments and replication timing regions. Moreover, we find that SVs frequently occur at 3D loop anchors, that SVs can cause a switch in chromatin compartments and replication timing, and that this is a major source of SV-mediated effects on nearby gene expression changes. Finally, we provide evidence for a general mechanistic bias of the 3D chromatin on SV occurrence using data from more than 2700 patient-derived cancer genomes.


Assuntos
Cromotripsia , Genoma , Cromatina/genética , Cromossomos , Genoma Humano , Variação Estrutural do Genoma , Humanos
13.
Mol Cell ; 67(6): 1037-1048.e6, 2017 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-28890333

RESUMO

The three-dimensional arrangement of the human genome comprises a complex network of structural and regulatory chromatin loops important for coordinating changes in transcription during human development. To better understand the mechanisms underlying context-specific 3D chromatin structure and transcription during cellular differentiation, we generated comprehensive in situ Hi-C maps of DNA loops in human monocytes and differentiated macrophages. We demonstrate that dynamic looping events are regulatory rather than structural in nature and uncover widespread coordination of dynamic enhancer activity at preformed and acquired DNA loops. Enhancer-bound loop formation and enhancer activation of preformed loops together form multi-loop activation hubs at key macrophage genes. Activation hubs connect 3.4 enhancers per promoter and exhibit a strong enrichment for activator protein 1 (AP-1)-binding events, suggesting that multi-loop activation hubs involving cell-type-specific transcription factors represent an important class of regulatory chromatin structures for the spatiotemporal control of transcription.


Assuntos
Diferenciação Celular , Montagem e Desmontagem da Cromatina , Cromatina/metabolismo , DNA/metabolismo , Macrófagos/metabolismo , Fator de Transcrição AP-1/metabolismo , Transcrição Gênica , Sítios de Ligação , Linhagem Celular Tumoral , Cromatina/química , Cromatina/genética , DNA/química , DNA/genética , Elementos Facilitadores Genéticos , Regulação da Expressão Gênica , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Conformação de Ácido Nucleico , Fenótipo , Ligação Proteica , Fatores de Tempo , Fator de Transcrição AP-1/genética
14.
Mol Cell ; 67(4): 566-578.e10, 2017 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-28803781

RESUMO

50 years ago, Vincent Allfrey and colleagues discovered that lymphocyte activation triggers massive acetylation of chromatin. However, the molecular mechanisms driving epigenetic accessibility are still unknown. We here show that stimulated lymphocytes decondense chromatin by three differentially regulated steps. First, chromatin is repositioned away from the nuclear periphery in response to global acetylation. Second, histone nanodomain clusters decompact into mononucleosome fibers through a mechanism that requires Myc and continual energy input. Single-molecule imaging shows that this step lowers transcription factor residence time and non-specific collisions during sampling for DNA targets. Third, chromatin interactions shift from long range to predominantly short range, and CTCF-mediated loops and contact domains double in numbers. This architectural change facilitates cognate promoter-enhancer contacts and also requires Myc and continual ATP production. Our results thus define the nature and transcriptional impact of chromatin decondensation and reveal an unexpected role for Myc in the establishment of nuclear topology in mammalian cells.


Assuntos
Linfócitos B/metabolismo , Ciclo Celular , Núcleo Celular/metabolismo , Montagem e Desmontagem da Cromatina , Cromatina/metabolismo , Histonas/metabolismo , Ativação Linfocitária , Proteínas Proto-Oncogênicas c-myc/metabolismo , Acetilcoenzima A/metabolismo , Acetilação , Trifosfato de Adenosina/metabolismo , Animais , Linfócitos B/imunologia , Linhagem Celular , Cromatina/química , Cromatina/genética , Metilação de DNA , Epigênese Genética , Genótipo , Histonas/química , Imunidade Humoral , Metilação , Camundongos Endogâmicos C57BL , Camundongos Knockout , Conformação de Ácido Nucleico , Fenótipo , Domínios e Motivos de Interação entre Proteínas , Processamento de Proteína Pós-Traducional , Proteínas Proto-Oncogênicas c-myc/química , Proteínas Proto-Oncogênicas c-myc/genética , Imagem Individual de Molécula , Relação Estrutura-Atividade , Fatores de Tempo , Transcrição Gênica
15.
Genome Res ; 31(6): 981-994, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34006569

RESUMO

Chromatin architecture mapping in 3D formats has increased our understanding of how regulatory sequences and gene expression are connected and regulated in a genome. The 3D chromatin genome shows extensive remodeling during embryonic development, and although the cleavage-stage embryos of most species lack structure before zygotic genome activation (pre-ZGA), zebrafish has been reported to have structure. Here, we aimed to determine the chromosomal architecture in paternal/sperm zebrafish gamete cells to discern whether it either resembles or informs early pre-ZGA zebrafish embryo chromatin architecture. First, we assessed the higher-order architecture through advanced low-cell in situ Hi-C. The structure of zebrafish sperm, packaged by histones, lacks topological associated domains and instead displays "hinge-like" domains of ∼150 kb that repeat every 1-2 Mbs, suggesting a condensed repeating structure resembling mitotic chromosomes. The pre-ZGA embryos lacked chromosomal structure, in contrast to prior work, and only developed structure post-ZGA. During post-ZGA, we find chromatin architecture beginning to form at small contact domains of a median length of ∼90 kb. These small contact domains are established at enhancers, including super-enhancers, and chemical inhibition of Ep300a (p300) and Crebbpa (CBP) activity, lowering histone H3K27ac, but not transcription inhibition, diminishes these contacts. Together, this study reveals hinge-like domains in histone-packaged zebrafish sperm chromatin and determines that the initial formation of high-order chromatin architecture in zebrafish embryos occurs after ZGA primarily at enhancers bearing high H3K27ac.


Assuntos
Cromatina , Peixe-Zebra , Animais , Cromatina/genética , Cromatina/metabolismo , Cromossomos/genética , Desenvolvimento Embrionário/genética , Regulação da Expressão Gênica no Desenvolvimento , Masculino , Espermatozoides/metabolismo , Peixe-Zebra/genética , Zigoto
16.
Genome Res ; 31(6): 968-980, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34006570

RESUMO

Chromatin looping plays an important role in genome regulation. However, because ChIP-seq and loop-resolution Hi-C (DNA-DNA proximity ligation) are extremely challenging in mammalian early embryos, the developmental stage at which cohesin-mediated loops form remains unknown. Here, we study early development in medaka (the Japanese killifish, Oryzias latipes) at 12 time points before, during, and after gastrulation (the onset of cell differentiation) and characterize transcription, protein binding, and genome architecture. We find that gastrulation is associated with drastic changes in genome architecture, including the formation of the first loops between sites bound by the insulator protein CTCF and a large increase in the size of contact domains. In contrast, the binding of the CTCF is fixed throughout embryogenesis. Loops form long after genome-wide transcriptional activation, and long after domain formation seen in mouse embryos. These results suggest that, although loops may play a role in differentiation, they are not required for zygotic transcription. When we repeated our experiments in zebrafish, loops did not emerge until gastrulation, that is, well after zygotic genome activation. We observe that loop positions are highly conserved in synteny blocks of medaka and zebrafish, indicating that the 3D genome architecture has been maintained for >110-200 million years of evolution.


Assuntos
Oryzias , Animais , Fator de Ligação a CCCTC/genética , Fator de Ligação a CCCTC/metabolismo , Proteínas de Ciclo Celular/genética , Cromatina/genética , Gastrulação/genética , Camundongos , Oryzias/genética , Peixe-Zebra/genética
17.
PLoS Pathog ; 18(2): e1010288, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35167626

RESUMO

Urogenital schistosomiasis is caused by the blood fluke Schistosoma haematobium and is one of the most neglected tropical diseases worldwide, afflicting > 100 million people. It is characterised by granulomata, fibrosis and calcification in urogenital tissues, and can lead to increased susceptibility to HIV/AIDS and squamous cell carcinoma of the bladder. To complement available treatment programs and break the transmission of disease, sound knowledge and understanding of the biology and ecology of S. haematobium is required. Hybridisation/introgression events and molecular variation among members of the S. haematobium-group might effect important biological and/or disease traits as well as the morbidity of disease and the effectiveness of control programs including mass drug administration. Here we report the first chromosome-contiguous genome for a well-defined laboratory line of this blood fluke. An exploration of this genome using transcriptomic data for all key developmental stages allowed us to refine gene models (including non-coding elements) and annotations, discover 'new' genes and transcription profiles for these stages, likely linked to development and/or pathogenesis. Molecular variation within S. haematobium among some geographical locations in Africa revealed unique genomic 'signatures' that matched species other than S. haematobium, indicating the occurrence of introgression events. The present reference genome (designated Shae.V3) and the findings from this study solidly underpin future functional genomic and molecular investigations of S. haematobium and accelerate systematic, large-scale population genomics investigations, with a focus on improved and sustained control of urogenital schistosomiasis.


Assuntos
Variação Genética , Genoma de Protozoário , Schistosoma haematobium/genética , Esquistossomose Urinária/parasitologia , Transcriptoma , Animais , Cromossomos/parasitologia , Genes de Protozoários , Genoma , Estudo de Associação Genômica Ampla , Análise de Sequência de DNA
18.
Chromosome Res ; 31(2): 13, 2023 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-37043058

RESUMO

We report the first chromosome-length genome assemblies for three species in the mammalian order Pholidota: the white-bellied, Chinese, and Sunda pangolins. Surprisingly, we observe extraordinary karyotypic plasticity within this order and, in female white-bellied pangolins, the largest number of chromosomes reported in a Laurasiatherian mammal: 2n = 114. We perform the first karyotype analysis of an African pangolin and report a Y-autosome fusion in white-bellied pangolins, resulting in 2n = 113 for males. We employ a novel strategy to confirm the fusion and identify the autosome involved by finding the pseudoautosomal region (PAR) in the female genome assembly and analyzing the 3D contact frequency between PAR sequences and the rest of the genome in male and female white-bellied pangolins. Analyses of genetic variability show that white-bellied pangolins have intermediate levels of genome-wide heterozygosity relative to Chinese and Sunda pangolins, consistent with two moderate declines of historical effective population size. Our results reveal a remarkable feature of pangolin genome biology and highlight the need for further studies of these unique and endangered mammals.


Assuntos
Mamíferos , Pangolins , Animais , Masculino , Feminino , Pangolins/genética , Mamíferos/genética , Genoma , Cromossomos/genética
19.
Plant J ; 111(5): 1252-1266, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35779281

RESUMO

Narrow-leafed lupin (NLL; Lupinus angustifolius) is a key rotational crop for sustainable farming systems, whose grain is high in protein content. It is a gluten-free, non-genetically modified, alternative protein source to soybean (Glycine max) and as such has gained interest as a human food ingredient. Here, we present a chromosome-length reference genome for the species and a pan-genome assembly comprising 55 NLL lines, including Australian and European cultivars, breeding lines and wild accessions. We present the core and variable genes for the species and report on the absence of essential mycorrhizal associated genes. The genome and pan-genomes of NLL and its close relative white lupin (Lupinus albus) are compared. Furthermore, we provide additional evidence supporting LaRAP2-7 as the key alkaloid regulatory gene for NLL and demonstrate the NLL genome is underrepresented in classical NLR disease resistance genes compared to other sequenced legume species. The NLL genomic resources generated here coupled with previously generated RNA sequencing datasets provide new opportunities to fast-track lupin crop improvement.


Assuntos
Lupinus , Austrália , Cromossomos , Genômica , Humanos , Lupinus/genética , Melhoramento Vegetal
20.
BMC Genomics ; 24(1): 74, 2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36792983

RESUMO

BACKGROUND: Gastrointestinal (GIT) helminthiasis is a global problem that affects livestock health, especially in small ruminants. One of the major helminth parasites of sheep and goats, Teladorsagia circumcincta, infects the abomasum and causes production losses, reductions in weight gain, diarrhoea and, in some cases, death in young animals. Control strategies have relied heavily on the use of anthelmintic medication but, unfortunately, T. circumcincta has developed resistance, as have many helminths. Vaccination offers a sustainable and practical solution, but there is no commercially available vaccine to prevent Teladorsagiosis. The discovery of new strategies for controlling T. circumcincta, such as novel vaccine targets and drug candidates, would be greatly accelerated by the availability of better quality, chromosome-length, genome assembly because it would allow the identification of key genetic determinants of the pathophysiology of infection and host-parasite interaction. The available draft genome assembly of T. circumcincta (GCA_002352805.1) is highly fragmented and thus impedes large-scale investigations of population and functional genomics. RESULTS: We have constructed a high-quality reference genome, with chromosome-length scaffolds, by purging alternative haplotypes from the existing draft genome assembly and scaffolding the result using chromosome conformation, capture-based, in situ Hi-C technique. The improved (Hi-C) assembly resulted in six chromosome-length scaffolds with length ranging from 66.6 Mbp to 49.6 Mbp, 35% fewer sequences and reduction in size. Substantial improvements were also achieved in both the values for N50 (57.1 Mbp) and L50 (5 Mbp). A higher and comparable level of genome and proteome completeness was achieved for Hi-C assembly on BUSCO parameters. The Hi-C assembly had a greater synteny and number of orthologs with a closely related nematode, Haemonchus contortus. CONCLUSION: This improved genomic resource is suitable as a foundation for the identification of potential targets for vaccine and drug development.


Assuntos
Haemonchus , Nematoides , Parasitos , Doenças dos Ovinos , Animais , Ovinos , Gado , Genômica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA