Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Small ; : e2401505, 2024 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-38678539

RESUMO

The achievement of both efficiency and stability in perovskite solar cells (PSCs) remains a challenging and actively researched topic. In particular, among different environmental factors, ultraviolet (UV) photons play a pivotal role in contributing to device degradation. In this work, by harvesting simultaneously both the optical and the structural properties of bottom-up-synthesized colloidal carbon quantum dots (CQDs), a cost-effective means is provided to circumvent the UV-induced degradation in PSCs without scarification on their power conversion efficiencies (PCEs). By exploring and optimizing the number of CQDs and the different locations/interfaces of the solar cells where CQDs are applied, a synergetic configuration is achieved where the photovoltaic performance drop due to optical loss is completely compensated by the increased perovskite crystallinity due to interfacial modification. As a result, on the optimized configurations where CQDs are applied both on the exterior front side as an optical layer and at the interface between the electron transport layer and the perovskite absorber, unencapsulated PSCs with PCEs >20% are fabricated which can maintain up to ≈94% of their initial PCE after 100 h of degradation in ambient air under continuous UV illumination (5 mW cm-2).

2.
Nano Lett ; 18(8): 5098-5103, 2018 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-30001486

RESUMO

Light-matter interactions are often considered to be mediated by the electric component of light only, neglecting the magnetic contribution. However, the electromagnetic energy density is equally distributed between both parts of the optical fields. Within this scope, we experimentally demonstrate here, in excellent agreement with numerical simulations, that plasmonic nanostructures can selectively manipulate and tune the magnetic versus electric emission of luminescent nanocrystals. In particular, we show selective enhancement or decay of magnetic and electric emission from trivalent europium-doped nanoparticles in the vicinity of plasmonic nanocavities, designed to efficiently couple to either the electric or magnetic emission of the quantum emitter. Specifically, by precisely controlling the spatial position of the emitter with respect to our plasmonic nanostructures, by means of a near-field optical microscope, we record local distributions of both magnetic and electric radiative local densities of states (LDOS) with nanoscale precision. The distribution of the radiative LDOS reveals the modification of both the magnetic and electric optical quantum environments induced by the presence of the metallic nanocavities. This manipulation and enhancement of magnetic light-matter interaction by means of plasmonic nanostructures opens up new possibilities for the research fields of optoelectronics, chiral optics, nonlinear and nano-optics, spintronics, and metamaterials, among others.

3.
Nano Lett ; 18(6): 3481-3487, 2018 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-29701991

RESUMO

Electric and magnetic optical fields carry the same amount of energy. Nevertheless, the efficiency with which matter interacts with electric optical fields is commonly accepted to be at least 4 orders of magnitude higher than with magnetic optical fields. Here, we experimentally demonstrate that properly designed photonic nanoantennas can selectively manipulate the magnetic versus electric emission of luminescent nanocrystals. In particular, we show selective enhancement of magnetic emission from trivalent europium-doped nanoparticles in the vicinity of a nanoantenna tailored to exhibit a magnetic resonance. Specifically, by controlling the spatial coupling between emitters and an individual nanoresonator located at the edge of a near-field optical scanning tip, we record with nanoscale precision local distributions of both magnetic and electric radiative local densities of states (LDOS). The map of the radiative LDOS reveals the modification of both the magnetic and electric quantum environments induced by the presence of the nanoantenna. This manipulation and enhancement of magnetic light-matter interaction by means of nanoantennas opens up new possibilities for the research fields of optoelectronics, chiral optics, nonlinear and nano-optics, spintronics, and metamaterials, among others.

4.
Small ; 14(16): e1704013, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29473299

RESUMO

Photodetection in the short-wave infrared (SWIR) spectrum is a challenging task achieved often by costly low bandgap compound semiconductors involving highly toxic elements. In this work, an alternative low-cost approach is reported for SWIR sensors that rely on the plasmonic-induced photothermal effect of solution-processed colloidal gold nanorods (Au NRs). A series of uniform solution-processed Au NRs of various aspect ratios are prepared exhibiting a strong and well-defined longitudinal localized surface plasmon resonance (L-LSPR) maximum from 900 nm to 1.3 µm. A hybrid device structure is fabricated by applying Au NRs on the surface of a thermistor. Under a monochromatic illumination, hybrid Au-NR/thermistor devices exhibit a clear photoresponse in the form of photoinduced resistance drop in the wavelength window from 1.0 to 1.8 µm. The photoresponsivity of such hybrid devices reaches a maximum value of 4.44 × 107 Ω W-1 at λ = 1.4 µm (intensity = 0.28 mW cm-2 ), a wavelength in agreement with the L-LSPR of the Au NRs applied. Colloidal Au NRs, capable to perform fast conversion between photon absorption and thermal energy, thus open an interesting avenue for alternative low-cost SWIR photodetection.

5.
Nano Lett ; 14(4): 2079-85, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24645987

RESUMO

In this work we discuss the excitation of parallel collective resonances in arrays of gold nanoparticles. Parallel collective resonances result from the coupling of the nanoparticles localized surface plasmons with diffraction orders traveling in the direction parallel to the polarization vector. While they provide field enhancement and delocalization as the standard collective resonances, our results suggest that parallel resonances could exhibit greater tolerance to index asymmetry in the environment surrounding the arrays. The near- and far-field properties of these resonances are analyzed, both experimentally and numerically.

6.
Nanoscale Adv ; 4(7): 1786-1792, 2022 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-36132159

RESUMO

Recent attempts to improve solar cell performance by increasing their spectral absorption interval incorporate up-converting fluorescent nanocrystals on the structure. These nanocrystals absorb low energy light and emit higher energy photons that can then be captured by the solar cell active layer. However, this process is very inefficient and it needs to be enhanced by different strategies. In this work, we have studied the effect of nanostructuration of perovskite thin films used in the fabrication of hybrid solar cells on their local optical properties. The perovskite surface was engraved with a focused ion beam to form gratings of one-dimensional grooves. We characterized the surfaces with a fluorescence scanning near-field optical microscope, and obtained maps showing a fringe pattern oriented in a direction parallel to the grooves. By scanning structures as a function of the groove depth, ranging from 100 nm to 200 nm, we observed that a 3-fold luminescence enhancement could be obtained for the deeper ones. Near-field luminescence was found to be enhanced between the grooves, not inside them, independent of the groove depth and the incident polarization direction. This indicates that the ideal position of the nanocrystals is between the grooves. In addition, we also studied the influence of the inhomogeneities of the perovskite layer and we observed that roughness tends to locally modify the intensity of the fringes and distort their alignment. All the experimental results are in good agreement with numerical simulations.

7.
Small ; 7(2): 259-64, 2011 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-21213391

RESUMO

By using scanning thermal microscopy, it is shown that nanoscale constrictions in metallic microwires deposited on an oxidized silicon substrate can be tuned in terms of temperature and confinement size. High-resolution temperature maps indeed show that submicrometer hot spots and hot-spot arrays are obtained when the SiO(2) layer thickness decreases below 100 nm. When the SiO(2) thickness becomes larger, heat is less confined in the vicinity of the constrictions and laterally spreads all along the microwire. These results are in good agreement with numerical simulations, which provide dependences between silica-layer thickness and nanodot shape and temperature.


Assuntos
Nanoestruturas/química , Nanotecnologia/métodos , Microscopia Eletrônica de Varredura , Nanoestruturas/ultraestrutura , Temperatura
8.
ACS Appl Mater Interfaces ; 13(38): 45957-45965, 2021 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-34520660

RESUMO

Polypyrrole (PPy) is a conductive polymer and widely applied in different applications owing to its broadband absorption in the UV-visible, near-infrared (NIR), and short-wave-infrared (SWIR) spectrum, excellent conductivity, and strong photothermal effect. In this work, we explored for the first time the photothermal effect of PPy nanoparticles (PPy-NPs) in a photothermal-induced detector structure and developed a new type of air-stable hybrid PPy-NPs/Pt photodetector (PD) with NIR/SWIR sensitivity. By combining PPy-NPs with a platinum (Pt)-resistive pattern, we fabricated PPy-NPs/Pt PDs that are sensitive to illumination in the wavelength range from 800 to 2000 nm. Under the illumination of λ = 1.5 µm, the maximum photoresponsivity was measured to be ∼1.3 A/W with a 131 µs photoresponse rise time. Owing to the excellent material stability from both PPy-NPs and the Pt pattern, the current photodetectors show long-term stable photoresponsivity when they were stored in air without encapsulation. The results suggest that the PPy-NPs/Pt hybrid PDs are promising candidates for a new type of low-cost and broadband due to their multiple advantages such as free of toxic heavy metals, air stability, and solution processing.

9.
ACS Appl Mater Interfaces ; 12(49): 54824-54832, 2020 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-33226765

RESUMO

Metal halide perovskites are promising contenders for next-generation photovoltaic applications due to their remarkable photovoltaic efficiency and their compatibility with solution-processed fabrication. Among the various strategies to control the crystallinity and the morphology of the perovskite active layer and its interfaces with the transport layers, fabrication of perovskite solar cells from precursor solutions with a slight excess of PbI2 has become very common. Despite this, the role of such excess PbI2 is still rather controversial, lacking consensus on its effect on the bulk and interface properties of the perovskite layer. In this work, we investigate the effect of removing the excess PbI2 from the surface of a triple-cation mixed-halide Cs0.05(FA0.83MA0.17)0.95Pb(I0.83Br0.17)3 perovskite layer by four different organic salts on their photovoltaic performance and stability. We show that treatments with iodide salts such as methylammonium iodide (MAI) and formamidinium iodide (FAI) can lead to the strongest beneficial effects on solar cell efficiency, charge recombination suppression, and stability while non-iodide salts such as methylammonium bromide (MABr) and methylammonium chloride (MACl) can also provide improvement in terms of charge recombination suppression and stability to a moderate extent in comparison to the untreated sample. Under optimized conditions and continuous solar illumination, the MAI- and FAI-treated devices maintained 81 and 86% of their initial power conversion efficiency (PCEs), respectively, after 100 h of continuous illumination (versus 64% for the untreated solar cell with excess PbI2). Our study demonstrates that eliminating excess PbI2 at the perovskite/hole transport layer (HTL) interface by treating the perovskite surface with organic salts is a simple and efficient route to enhance the efficiency, and in particular the stability of perovskite solar cells.

10.
ACS Appl Mater Interfaces ; 12(5): 5979-5989, 2020 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-31927904

RESUMO

Organic-inorganic hybrid perovskite solar cells have attracted much attention due to their high power conversion efficiency (>25%) and low-cost fabrication. Yet, improvements are still needed for more stable and higher-performing solar cells. In this work, a series of TiO2 nanocolumn photonic structures have been intentionally fabricated on half of the compact TiO2-coated fluorine-doped tin oxide substrate by glancing angle deposition with magnetron sputtering, a method particularly suitable for industrial applications due to its high reliability and reduced cost when coating large areas. These vertically aligned nanocolumn arrays were then applied as the electron transport layer into triple-cation lead halide perovskite solar cells based on Cs0.05(FA0.83MA0.17)0.95Pb(I0.83Br0.17)3. By comparison to solar cells built onto the same substrate without nanocolumns, the use of TiO2 nanocolumns can significantly enhance the power conversion efficiency of the perovskite solar cells by 7% and prolong their shelf life. Here, detailed characterizations on the morphology and the spectroscopic aspects of the nanocolumns, their near-field and far-field optical properties, solar cells characteristics, as well as the charge transport properties provide mechanistic insights on how one-dimensional TiO2 nanocolumns affect the performance of perovskite halide solar cells in terms of charge transport, light harvesting, and stability, knowledge necessary for the future design of higher-performing and more stable perovskite solar cells.

11.
Nanotechnology ; 20(11): 115703, 2009 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-19420451

RESUMO

A scanning thermal microscope that uses a fluorescent particle as a temperature probe has been developed. The particle, made of a rare-earth ion-doped fluoride glass, is glued at the extremity of a sharp tungsten tip and scanned on the surface of an electronic device. The temperature of the device is determined by measuring the fluorescence spectrum of the particle at every point on the surface and by comparing the intensity variations of two emission lines. As an example, we will show some images obtained on a nickel stripe 1 microm wide, heated by an electrical current. A good agreement is observed with a simulation of the temperature field on the device.

12.
Nanoscale ; 11(39): 18124-18131, 2019 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-31506660

RESUMO

Short-wave infrared (SWIR) photodetectors, sensitive to the wavelength range between 1 and 3 µm, are essential components for various applications, which constantly demand devices with a lower cost, a higher responsivity and a faster response. In this work, a new hybrid device structure is presented for SWIR photodetection composing a coupling between solution-processed colloidal plasmonic gold (Au) NRs and a morphology-optimized resistive platinum (Pt) microwire. Pt microwires harvest efficiently the photothermal effect of Au NRs and in return generating a change of device resistance. A fast photon-heat-resistance conversion happens in these Au-NRs/Pt photodetectors exhibiting a response (rise) time of 97 µs under the illumination of a λ = 1.5 µm laser. Clear photoresponse can be observed in these devices at a laser illumination with a modulation frequency up to 50 kHz. The photoresponsivity of the current devices reached 4500 Ω W-1 under a laser power of 0.2 mW, which is equivalent to a responsivity of 340 mA W-1 under a DC bias of 1 V. A series of mapping experiments were performed providing a direct correlation between Au NRs and the device zone where resistance change happens under a laser illumination modulated at different frequencies.

13.
ACS Appl Mater Interfaces ; 11(45): 42571-42579, 2019 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-31625382

RESUMO

Photodetection in the short-wave infrared (SWIR) wavelength window represents one of the core technologies allowing for many applications. Most current photodetectors suffer from high cost due to the epitaxial growth requirements and the ecological issue due to the use of highly toxic heavy-metal elements. Toward alternative SWIR photodetection strategies, in this work, high-performance heavy-metal-free flexible photodetectors sensitive to λ = 1.5 µm photons are presented based on the formation of a solution-processed hybrid composed of a conjugated diketopyrrolopyrrole-base polymer/PC70BM bulk heterojunction organic host together with inorganic guest NaYF4:15%Er3+ upconversion nanoparticles (UCNPs). Under the illumination of λ = 1.5 µm SWIR photons, optimized hybrid bulk-heterojunction (BHJ)/UCNP photodetectors exhibit a photoresponsivity of 0.73 and 0.44 mA/W, respectively, for devices built on rigid indium tin oxide (ITO)/glass and flexible ITO/polyethylene terephthalate substrates. These hybrid photodetectors are capable of performing SWIR photodetection with a fast operation speed, characterized by a short photocurrent rise time down to 80 µs, together with an excellent mechanical robustness for flexible applications. Exhibiting simultaneously multiple advantages including solution-processability, flexibility, and the absence of toxic heavy metal elements together with a fast operation speed and good photoresponsivity, these hybrid BHJ(DPPTT-T/PC70BM)/UCNP photodetectors are promising candidates for next-generation low-cost and high-performance SWIR photodetectors.

14.
Nanoscale ; 11(21): 10365-10371, 2019 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-31107471

RESUMO

Fluorescence enhancement effects have many potential applications in the domain of biochemical sensors and optoelectronic devices. Here, the emission properties of up-converting nanocrystals near nanostructures that support surface plasmon resonances have been investigated. Gold nanodisks of various diameters were illuminated in the near-infrared (λ = 975 nm) and a single fluorescent nanocrystal glued at the end of an atomic force microscope tip was scanned around them. By detecting its visible fluorescence around each structure, it is found that the highest fluorescence enhancement occurs in a zone that forms a two-lobe pattern near the nanodisks and which corresponds to the map of the near-field intensity calculated at the excitation wavelength. In agreement with numerical simulations, it is also observed that the maximum fluorescence enhancement takes place when the disk diameter is around 200 nm. Surprisingly, this disk size is small when compared to that yielding the highest far-field scattering resonance, which occurs for disks with a diameter of 300-350 nm at the same excitation wavelength. This shift between the near and far-field resonances should be taken into account in the design of structures in systems that use plasmon enhanced fluorescence effects.

15.
Chem Commun (Camb) ; 54(21): 2623-2626, 2018 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-29465731

RESUMO

Thickness-tunable and compact FA0.83Cs0.17Pb(I0.6Br0.4)3 perovskite thin films are achieved with a large grain size up to 12 microns. They are then employed to fabricate functional solar cells with a simplified planar structure without the use of electron-transport (ETL) layers. These results are highly encouraging for the future large-scale fabrication of FA0.83Cs0.17Pb(I0.6Br0.4)3-based solar cells.

16.
Nanoscale ; 8(14): 7377-83, 2016 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-26882839

RESUMO

The surface plasmonic effect of metal nanostructures is a promising method to boost the performance of optoelectronic devices such as solar cells and photodetectors. In this report, gold nanoparticles with surface plasmon resonance localized at about 530 nm were synthesized and integrated into graphene/methylammonium lead iodide perovskite (CH3NH3PbI3) hybrid photodetectors. Compared with pristine graphene-CH3NH3PbI3 devices, a device with gold nanoparticles embedded has a doubly higher photo-responsivity as well as a faster photoresponse speed. The present devices adopt a unique configuration with gold nanoparticles physically separated from the light harvesting component, i.e., the perovskite layer by graphene. Advantages are revealed through a series of characterization techniques and analyses. First, thanks to the tiny thickness of graphene, the plasmonic effect of gold nanoparticles can effectively enhance the near-field of perovskite and thus facilitate light-harvesting. Second, the enhanced light-harvesting in perovskite happens very close to this interface where photo-induced carriers have relatively short paths to diffuse toward graphene, favoring a fast photo-response. This work demonstrates a feasible and inspiring strategy to improve the performance of photodetectors through the surface plasmonic effect of metallic nanostructures.

17.
Rev Sci Instrum ; 82(3): 036106, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21456808

RESUMO

We have developed a scanning thermal probe microscope that operates in liquid environments. The thermal sensor is a fluorescent particle glued at the end of a sharp tungsten tip. Since light emission is a strongly thermally sensitive effect, the measurement of the particle fluorescence variations allows the determination of the temperature. No electrical wiring of the probe is needed. As a demonstrative example, we have measured the temperature map of a Joule-heated microheater immersed in a water∕glycerol solution. Both topographical and thermal images are obtained with a good sensitivity.

18.
Appl Opt ; 46(36): 8573-7, 2007 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-18091966

RESUMO

Using a scanning near-field optical microscope, we visualize, in three dimensions, the electromagnetic field distribution near an isolated slit aperture in a thin gold film. At the metal-air interface and for a TM incident polarization, we confirm some recently observed results and show that the slit generates two kinds of surface waves: a slowly decaying surface plasmon polariton and a quasi-cylindrical wave that decreases more rapidly when moving away from the slit. These waves are not generated for a TE incident polarization. In a noncontact mode, we also observe how the transmitted light diverges in free space. At a small distance from the slit (< 2 microm), we find that the emerging light spreads in all directions for TM, forming an electromagnetic cloud, whereas it is concentrated above the slit for TE, forming a more directive light jet. The experimental images are in good agreement with the numerical simulations.

19.
Appl Opt ; 42(34): 6880-8, 2003 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-14661799

RESUMO

Apertureless scanning near-field optical microscopy has been used to image fluorescent latex spheres with a resolution of a few tens of nanometers and good signal-to-noise ratio. The near-field fluorescence images reveal optical interference with several highly contrasted fringes located around the spheres. The origin of the interference is discussed in detail, and models are used to explain their formation. Spatial coherence is also discussed.

20.
Appl Opt ; 43(19): 3829-37, 2004 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-15250549

RESUMO

Fluorescent rare-earth-doped glass particles glued to the end of an atomic force microscope tip have been used to perform scanning near-field optical measurements on nanostructured samples. The fixation procedure of the fluorescent fragment at the end of the tip is described in detail. The procedure consists of depositing a thin adhesive layer on the tip. Then a tip approach is performed on a fragment that remains stuck near the tip extremity. To displace the particle and position it at the very end of the tip, a nanomanipulation is achieved by use of a second tip mounted on piezoelectric scanners. Afterward, the particle size is reduced by focused ion beam milling. These particles exhibit a strong green luminescence where excited in the near infrared by an upconversion mechanism. Images obtained near a metallic edge show a lateral resolution in the 180-200-nm range. Images we obtained by measuring the light scattered by 250-nm holes show a resolution well below 100 nm. This phenomenon can be explained by a local excitation of the particle and by the nonlinear nature of the excitation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA