Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 82
Filtrar
Mais filtros

País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
PLoS Pathog ; 20(6): e1012315, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38889192

RESUMO

Invasive aspergillosis causes significant morbidity and mortality in immunocompromised patients. Natural killer (NK) cells are pivotal for antifungal defense. Thus far, CD56 is the only known pathogen recognition receptor on NK cells triggering potent antifungal activity against Aspergillus fumigatus. However, the underlying cellular mechanisms and the fungal ligand of CD56 have remained unknown. Using purified cell wall components, biochemical treatments, and ger mutants with altered cell wall composition, we herein found that CD56 interacts with the A. fumigatus cell wall carbohydrate galactosaminogalactan (GAG). This interaction induced NK-cell activation, degranulation, and secretion of immune-enhancing chemokines and cytotoxic effectors. Supernatants from GAG-stimulated NK cells elicited antifungal activity and enhanced antifungal effector responses of polymorphonuclear cells. In conclusion, we identified A. fumigatus GAG as a ligand of CD56 on human primary NK cells, stimulating potent antifungal effector responses and activating other immune cells.


Assuntos
Aspergilose , Aspergillus fumigatus , Antígeno CD56 , Células Matadoras Naturais , Humanos , Aspergillus fumigatus/imunologia , Células Matadoras Naturais/imunologia , Antígeno CD56/metabolismo , Antígeno CD56/imunologia , Aspergilose/imunologia , Aspergilose/microbiologia , Ativação Linfocitária/imunologia , Polissacarídeos/metabolismo , Polissacarídeos/imunologia , Parede Celular/imunologia , Parede Celular/metabolismo
2.
Proc Natl Acad Sci U S A ; 120(6): e2212003120, 2023 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-36719915

RESUMO

While establishing an invasive infection, the dormant conidia of Aspergillus fumigatus transit through swollen and germinating stages, to form hyphae. During this morphotype transition, the conidial cell wall undergoes dynamic remodeling, which poses challenges to the host immune system and antifungal drugs. However, such cell wall reorganization during conidial germination has not been studied so far. Here, we explored the molecular rearrangement of Aspergillus fumigatus cell wall polysaccharides during different stages of germination. We took advantage of magic-angle spinning NMR to investigate the cell wall polysaccharides, without employing any destructive method for sample preparation. The breaking of dormancy was associated with a significant change in the molar ratio between the major polysaccharides ß-1,3-glucan and α-1,3-glucan, while chitin remained equally abundant. The use of various polarization transfers allowed the detection of rigid and mobile polysaccharides; the appearance of mobile galactosaminogalactan was a molecular hallmark of germinating conidia. We also report for the first time highly abundant triglyceride lipids in the mobile matrix of conidial cell walls. Water to polysaccharides polarization transfers revealed an increased surface exposure of glucans during germination, while chitin remained embedded deeper in the cell wall, suggesting a molecular compensation mechanism to keep the cell wall rigidity. We complement the NMR analysis with confocal and atomic force microscopies to explore the role of melanin and RodA hydrophobin on the dormant conidial surface. Exemplified here using Aspergillus fumigatus as a model, our approach provides a powerful tool to decipher the molecular remodeling of fungal cell walls during their morphotype switching.


Assuntos
Aspergillus fumigatus , Proteínas Fúngicas , Aspergillus fumigatus/metabolismo , Esporos Fúngicos/metabolismo , Proteínas Fúngicas/metabolismo , Polissacarídeos/metabolismo , Quitina/metabolismo , Glucanos/metabolismo , Parede Celular/metabolismo
3.
PLoS Pathog ; 19(11): e1011841, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38033163

RESUMO

Macrophages play a key role in disseminated cryptococcosis, a deadly fungal disease caused by Cryptococcus neoformans. This opportunistic infection can arise following the reactivation of a poorly characterized latent infection attributed to dormant C. neoformans. Here, we investigated the mechanisms underlying reactivation of dormant C. neoformans using an in vitro co-culture model of viable but non-culturable (VBNC; equivalent of dormant) yeast cells with bone marrow-derived murine macrophages (BMDMs). Comparative transcriptome analysis of BMDMs incubated with log, stationary phase or VBNC cells of C. neoformans showed that VBNC cells elicited a reduced transcriptional modification of the macrophage but retaining the ability to regulate genes important for immune response, such as NLRP3 inflammasome-related genes. We further confirmed the maintenance of the low immunostimulatory capacity of VBNC cells using multiplex cytokine profiling, and analysis of cell wall composition and dectin-1 ligands exposure. In addition, we evaluated the effects of classic (M1) or alternative (M2) macrophage polarization on VBNC cells. We observed that intracellular residence sustained dormancy, regardless of the polarization state of macrophages and despite indirect detection of pantothenic acid (or its derivatives), a known reactivator for VBNC cells, in the C. neoformans-containing phagolysosome. Notably, M0 and M2, but not M1 macrophages, induced extracellular reactivation of VBNC cells by the secretion of extracellular vesicles and non-lytic exocytosis. Our results indicate that VBNC cells retain the low immunostimulatory profile required for persistence of C. neoformans in the host. We also describe a pro-pathogen role of macrophage-derived extracellular vesicles in C. neoformans infection and reinforce the impact of non-lytic exocytosis and the macrophage profile on the pathophysiology of cryptococcosis.


Assuntos
Criptococose , Cryptococcus neoformans , Vesículas Extracelulares , Animais , Camundongos , Cryptococcus neoformans/genética , Criptococose/microbiologia , Macrófagos , Exocitose
4.
Artigo em Inglês | MEDLINE | ID: mdl-38915287

RESUMO

Chitin, a polysaccharide found in the fungal cell wall and the exoskeletons of house dust mites and cockroaches, has garnered attention as a potential immunoreactive allergen. Mammals have evolved to express chitin-degrading chitinases (acidic mammalian chitinase/AMCase and chitotriosidase) that may modulate immune responses to chitin. We have previously reported that mice deficient in AMCase (Chia-/-) demonstrated better lung function during allergic fungal asthma. As expected, we show that mice overexpressing AMCase (SPAM mice) had worse airway hyperreactivity (AHR) during allergic fungal asthma. We further demonstrate that chitin-positive Aspergillus fumigatus conidia are detectable in the allergic lung during chronic exposure. Lung function in Chia-/- and SPAM mice directly correlated with the level of chitinase activity during chronic fungal exposure (Chia-/- mice, negligible chitinase activity, lower AHR; SPAM mice, heightened chitinase activity, higher AHR), suggesting that the breakdown of chitin promoted AHR. However, chronic exposure of normal mice to purified A. fumigatus chitin resulted in only moderate inflammatory changes in the lung which were not sufficient to induce AHR. Moreover, despite having dramatic differences in chitinase activity, chronic exposure of Chia-/- and SPAM mice to purified A. fumigatus chitin likewise did not modulate AHR. Collectively, these results indicate that chronic exposure to fungal chitin alone is incapable of driving AHR. Furthermore, our data suggests that the chitinase-mediated degradation of chitin associated with A. fumigatus conidia may facilitate unmasking and/or liberation of other fungal cell wall components that drive inflammatory responses which contribute to AHR.

5.
Med Mycol ; 62(4)2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38578660

RESUMO

Aspergillus flavus is a commonly encountered pathogen responsible for fungal rhinosinusitis (FRS) in arid regions. The species is known to produce aflatoxins, posing a significant risk to human health. This study aimed to investigate the aflatoxin profiles of A. flavus isolates causing FRS in Sudan. A total of 93 clinical and 34 environmental A. flavus isolates were studied. Aflatoxin profiles were evaluated by phenotypic (thin-layer and high-performance chromatography) and genotypic methods at various temperatures and substrates. Gene expression of aflD and aflR was also analyzed. A total of 42/93 (45%) isolates were positive for aflatoxin B1 and AFB2 by HPLC. When the incubation temperature changed from 28°C to 36°C, the number of positive isolates decreased to 41% (38/93). Genetic analysis revealed that 85% (79/93) of clinical isolates possessed all seven aflatoxin biosynthesis-associated genes, while 27% (14/51) of non-producing isolates lacked specific genes (aflD/aflR/aflS). Mutations were observed in aflS and aflR genes across both aflatoxin-producers and non-producers. Gene expression of aflD and aflR showed the highest expression between the 4th and 6th days of incubation on the Sabouraud medium and on the 9th day of incubation on the RPMI (Roswell Park Memorial Institute) medium. Aspergillus flavus clinical isolates demonstrated aflatoxigenic capabilities, influenced by incubation temperature and substrate. Dynamic aflD and aflR gene expression patterns over time enriched our understanding of aflatoxin production regulation. The overall findings underscored the health risks of Sudanese patients infected by this species, emphasizing the importance of monitoring aflatoxin exposure.


Aspergillus flavus, mainly causing fungal rhinosinusitis in Sudan, poses health risks due to aflatoxin production. This study revealed diverse levels of aflatoxin and gene expression of clinical isolates by pheno- and genotypic methods, emphasizing the need for vigilant monitoring in the region.


Assuntos
Aflatoxinas , Aspergillus flavus , Rinossinusite , Humanos , Aspergilose/microbiologia , Aspergillus flavus/genética , Aspergillus flavus/isolamento & purificação , Aspergillus flavus/classificação , Proteínas Fúngicas/genética , Genótipo , Rinossinusite/microbiologia , Sudão , Temperatura
6.
Nature ; 555(7696): 382-386, 2018 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-29489751

RESUMO

Resistance to infection is critically dependent on the ability of pattern recognition receptors to recognize microbial invasion and induce protective immune responses. One such family of receptors are the C-type lectins, which are central to antifungal immunity. These receptors activate key effector mechanisms upon recognition of conserved fungal cell-wall carbohydrates. However, several other immunologically active fungal ligands have been described; these include melanin, for which the mechanism of recognition is hitherto undefined. Here we identify a C-type lectin receptor, melanin-sensing C-type lectin receptor (MelLec), that has an essential role in antifungal immunity through recognition of the naphthalene-diol unit of 1,8-dihydroxynaphthalene (DHN)-melanin. MelLec recognizes melanin in conidial spores of Aspergillus fumigatus as well as in other DHN-melanized fungi. MelLec is ubiquitously expressed by CD31+ endothelial cells in mice, and is also expressed by a sub-population of these cells that co-express epithelial cell adhesion molecule and are detected only in the lung and the liver. In mouse models, MelLec was required for protection against disseminated infection with A. fumigatus. In humans, MelLec is also expressed by myeloid cells, and we identified a single nucleotide polymorphism of this receptor that negatively affected myeloid inflammatory responses and significantly increased the susceptibility of stem-cell transplant recipients to disseminated Aspergillus infections. MelLec therefore recognizes an immunologically active component commonly found on fungi and has an essential role in protective antifungal immunity in both mice and humans.


Assuntos
Aspergillus fumigatus/imunologia , Lectinas Tipo C/imunologia , Melaninas/imunologia , Naftóis/imunologia , Animais , Aspergilose/imunologia , Aspergilose/microbiologia , Aspergilose/prevenção & controle , Aspergillus fumigatus/química , Aspergillus fumigatus/patogenicidade , Parede Celular/química , Parede Celular/imunologia , Feminino , Humanos , Macrófagos/imunologia , Melaninas/química , Camundongos , Camundongos Endogâmicos C57BL , Naftóis/química , Ratos , Ratos Sprague-Dawley , Esporos Fúngicos/química , Esporos Fúngicos/imunologia , Especificidade por Substrato
7.
BMC Genomics ; 24(1): 684, 2023 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-37964194

RESUMO

BACKGROUND: Aspergillus fumigatus is a major fungal pathogen that causes severe problems due to its increasing resistance to many therapeutic agents. Fludioxonil is a compound that triggers a lethal activation of the fungal-specific High Osmolarity Glycerol pathway. Its pronounced antifungal activity against A. fumigatus and other pathogenic molds renders this agent an attractive lead substance for the development of new therapeutics. The group III hydride histidine kinase TcsC and its downstream target Skn7 are key elements of the multistep phosphorelay that represents the initial section of the High Osmolarity Glycerol pathway. Loss of tcsC results in resistance to fludioxonil, whereas a Δskn7 mutant is partially, but not completely resistant. RESULTS: In this study, we compared the fludioxonil-induced transcriptional responses in the ΔtcsC and Δskn7 mutant and their parental A. fumigatus strain. The number of differentially expressed genes correlates well with the susceptibility level of the individual strains. The wild type and, to a lesser extend also the Δskn7 mutant, showed a multi-faceted stress response involving genes linked to ribosomal and peroxisomal function, iron homeostasis and oxidative stress. A marked difference between the sensitive wild type and the largely resistant Δskn7 mutant was evident for many cell wall-related genes and in particular those involved in the biosynthesis of chitin. Biochemical data corroborate this differential gene expression that does not occur in response to hyperosmotic stress. CONCLUSIONS: Our data reveal that fludioxonil induces a strong and TcsC-dependent stress that affects many aspects of the cellular machinery. The data also demonstrate a link between Skn7 and the cell wall reorganizations that foster the characteristic ballooning and the subsequent lysis of fludioxonil-treated cells.


Assuntos
Antifúngicos , Aspergillus fumigatus , Dioxóis , Pirróis , Aspergillus fumigatus/genética , Aspergillus fumigatus/metabolismo , Antifúngicos/farmacologia , Antifúngicos/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Glicerol/metabolismo , Parede Celular/metabolismo
8.
Transpl Infect Dis ; 25(3): e14049, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36929539

RESUMO

BACKGROUND: Liver transplantation is increasing worldwide with underlying pathologies dominated by metabolic and alcoholic diseases in developed countries. METHODS: We provide a narrative review of invasive aspergillosis (IA) in liver transplant (LT) recipients. We searched PubMed and Google Scholar for references without language and time restrictions. RESULTS: The incidence of IA in LT recipients is low (1.8%), while mortality is high (∼50%). It occurs mainly early (<3 months) after LT. Some risk factors have been identified before (corticosteroid, renal, and liver failure), during (massive transfusion and duration of surgical procedure), and after transplantation (intensive care unit stay, re-transplantation, re-operation). Diagnosis can be difficult and therefore requires full radiological and clinicobiological collaboration. Accurate identification of Aspergillus species is recommended due to the cryptic species, and susceptibility testing is crucial given the increasing resistance of Aspergillus fumigatus to azoles. It is recommended to reduce the dose of tacrolimus (50%) and to closely monitor the trough level when introducing voriconazole, isavuconazole, and posaconazole. Surgery should be discussed on a case-by-case basis. Antifungal prophylaxis is recommended in high-risk patients. Environmental preventative measures should be implemented to prevent outbreaks of nosocomial aspergillosis in LT recipient units. CONCLUSION: IA remains a very serious disease in LT patients and should be promptly sought and, if possible, prevented by clinicians when risk factors are identified.


Assuntos
Aspergilose , Infecções Fúngicas Invasivas , Transplante de Fígado , Humanos , Antifúngicos/uso terapêutico , Transplante de Fígado/efeitos adversos , Aspergilose/tratamento farmacológico , Aspergilose/epidemiologia , Aspergilose/diagnóstico , Voriconazol/uso terapêutico , Aspergillus , Infecções Fúngicas Invasivas/tratamento farmacológico , Infecções Fúngicas Invasivas/epidemiologia , Infecções Fúngicas Invasivas/complicações , Transplantados
9.
Appl Microbiol Biotechnol ; 107(12): 4025-4040, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37166481

RESUMO

Aspergillus flavus and Aspergillus fumigatus are important human pathogens that can infect the lung and cornea. During infection, Aspergillus dormant conidia are the primary morphotype that comes in contact with the host. As the conidial surface-associated proteins (CSPs) and the extracellular proteins during the early stages of growth play a crucial role in establishing infection, we profiled and compared these proteins between a clinical strain of A. flavus and a clinical strain of A. fumigatus. We identified nearly 100 CSPs in both Aspergillus, and these non-covalently associated surface proteins were able to stimulate the neutrophils to secrete interleukin IL-8. Mass spectrometry analysis identified more than 200 proteins in the extracellular space during the early stages of conidial growth and germination (early exoproteome). The conidial surface proteins and the early exoproteome of A. fumigatus were enriched with immunoreactive proteins and those with pathogenicity-related functions while that of the A. flavus were primarily enzymes involved in cell wall reorganization and binding. Comparative proteome analysis of the CSPs and the early exoproteome between A. flavus and A. fumigatus enabled the identification of a common core proteome and potential species-specific signature proteins. Transcript analysis of selected proteins indicate that the transcript-protein level correlation does not exist for all proteins and might depend on factors such as membrane-anchor signals and protein half-life. The probable signature proteins of A. flavus and A. fumigatus identified in this study can serve as potential candidates for developing species-specific diagnostic tests. KEY POINTS: • CSPs and exoproteins could differentiate A. flavus and A. fumigatus. • A. fumigatus conidial surface harbored more antigenic proteins than A. flavus. • Identified species-specific signature proteins of A. flavus and A. fumigatus.


Assuntos
Aspergillus , Proteoma , Humanos , Proteoma/análise , Aspergillus/metabolismo , Aspergillus fumigatus/genética , Aspergillus fumigatus/metabolismo , Aspergillus flavus/metabolismo , Proteínas de Membrana/metabolismo , Esporos Fúngicos/metabolismo
10.
Mycopathologia ; 188(5): 603-621, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37289362

RESUMO

Aspergillus fumigatus is one the most ubiquitous airborne opportunistic human fungal pathogens. Understanding its interaction with host immune system, composed of cellular and humoral arm, is essential to explain the pathobiology of aspergillosis disease spectrum. While cellular immunity has been well studied, humoral immunity has been poorly acknowledge, although it plays a crucial role in bridging the fungus and immune cells. In this review, we have summarized available data on major players of humoral immunity against A. fumigatus and discussed how they may help to identify at-risk individuals, be used as diagnostic tools or promote alternative therapeutic strategies. Remaining challenges are highlighted and leads are given to guide future research to better grasp the complexity of humoral immune interaction with A. fumigatus.


Assuntos
Aspergilose , Aspergillus fumigatus , Humanos , Imunidade Humoral , Aspergilose/microbiologia
11.
Infect Immun ; 88(9)2020 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-32571987

RESUMO

Even though both cellular and humoral immunities contribute to host defense, the role played by humoral immunity against the airborne opportunistic fungal pathogen Aspergillus fumigatus has been underexplored. In this study, we aimed at deciphering the role of the complement system, the major humoral immune component, against A. fumigatus Mass spectrometry analysis of the proteins extracted from A. fumigatus conidial (asexual spores and infective propagules) surfaces opsonized with human serum indicated that C3 is the major complement protein involved. Flow cytometry and immunolabeling assays further confirmed C3b (activated C3) deposition on the conidial surfaces. Assays using cell wall components of conidia indicated that the hydrophobin RodAp, ß-(1,3)-glucan (BG) and galactomannan (GM) could efficiently activate C3. Using complement component-depleted sera, we showed that while RodAp activates C3 by the alternative pathway, BG and GM partially follow the classical and lectin pathways, respectively. Opsonization facilitated conidial aggregation and phagocytosis, and complement receptor (CR3 and CR4) blockage on phagocytes significantly inhibited phagocytosis, indicating that the complement system exerts a protective role against conidia by opsonizing them and facilitating their phagocytosis mainly through complement receptors. Conidial opsonization with human bronchoalveolar lavage fluid (BALF) confirmed C3 to be the major complement protein interacting with conidia. Nevertheless, complement C2 and mannose-binding lectin (MBL), the classical and lectin pathway components, respectively, were not identified, indicating that BALF activates the alternative pathway on the conidial surface. Moreover, the cytokine profiles were different upon stimulation of phagocytes with serum- and BALF-opsonized conidia, highlighting the importance of studying interaction of conidia with complement proteins in their biological niche.


Assuntos
Aspergillus fumigatus/imunologia , Líquido da Lavagem Broncoalveolar/imunologia , Complemento C3/imunologia , Polissacarídeos Fúngicos/farmacologia , Macrófagos/efeitos dos fármacos , Soro/imunologia , Esporos Fúngicos/imunologia , Aspergilose/genética , Aspergilose/imunologia , Aspergilose/microbiologia , Aspergillus fumigatus/química , Líquido da Lavagem Broncoalveolar/química , Líquido da Lavagem Broncoalveolar/microbiologia , Parede Celular/química , Parede Celular/imunologia , Ativação do Complemento/efeitos dos fármacos , Complemento C3/genética , Citocinas/biossíntese , Citocinas/imunologia , Polissacarídeos Fúngicos/imunologia , Polissacarídeos Fúngicos/isolamento & purificação , Galactose/análogos & derivados , Interações entre Hospedeiro e Microrganismos/imunologia , Humanos , Imunidade Celular , Imunidade Humoral , Integrina alfaXbeta2/genética , Integrina alfaXbeta2/imunologia , Antígeno de Macrófago 1/genética , Antígeno de Macrófago 1/imunologia , Macrófagos/imunologia , Macrófagos/microbiologia , Mananas/imunologia , Mananas/isolamento & purificação , Mananas/farmacologia , Proteínas Opsonizantes/farmacologia , Fagocitose/efeitos dos fármacos , Cultura Primária de Células , Ligação Proteica , Espécies Reativas de Oxigênio , Soro/química , Soro/microbiologia , Esporos Fúngicos/química , beta-Glucanas/imunologia , beta-Glucanas/isolamento & purificação , beta-Glucanas/farmacologia
12.
Cell Microbiol ; 21(5): e12994, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30552790

RESUMO

If the mycelium of Aspergillus fumigatus is very short-lived in the laboratory, conidia can survive for years. This survival capacity and extreme resistance to environmental insults is a major biological characteristic of this fungal species. Moreover, conidia, which easily reach the host alveola, are the infective propagules. Earlier studies have shown the role of some molecules of the outer conidial layer in protecting the fungus against the host defense. The outer layer of the conidial cell wall, directly in contact with the host cells, consists of α-(1,3)-glucan, melanin, and proteinaceous rodlets. This study is focused on the global importance of this outer layer. Single and multiple mutants without one to three major components of the outer layer were constructed and studied. The results showed that the absence of the target molecules resulting from multiple gene deletions led to unexpected phenotypes without any logical additivity. Unexpected compensatory cell wall surface modifications were indeed observed, such as the synthesis of the mycelial virulence factor galactosaminogalactan, the increase in chitin and glycoprotein concentration or particular changes in permeability. However, sensitivity of the multiple mutants to killing by phagocytic host cells confirmed the major importance of melanin in protecting conidia.


Assuntos
Aspergillus fumigatus/metabolismo , Parede Celular/metabolismo , Melaninas/metabolismo , Esporos Fúngicos/metabolismo , Aspergilose/imunologia , Aspergillus fumigatus/efeitos dos fármacos , Aspergillus fumigatus/genética , Aspergillus fumigatus/patogenicidade , Azóis/farmacologia , Benzenossulfonatos/farmacologia , Caspofungina/farmacologia , Parede Celular/efeitos dos fármacos , Parede Celular/genética , Quitina/metabolismo , Vermelho Congo/farmacologia , Proteínas Fúngicas/metabolismo , Glucanos/genética , Glucanos/metabolismo , Glicoproteínas/genética , Glicoproteínas/metabolismo , Humanos , Interações Hidrofóbicas e Hidrofílicas , Melaninas/genética , Melaninas/fisiologia , Monócitos/imunologia , Micélio/metabolismo , Fagócitos/metabolismo , Polissacarídeos/metabolismo , Piocianina/farmacologia , Esporos Fúngicos/citologia , Esporos Fúngicos/genética , Fatores de Virulência/metabolismo
13.
J Biol Chem ; 293(40): 15538-15555, 2018 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-30139746

RESUMO

Innate immunity in animals including humans encompasses the complement system, which is considered an important host defense mechanism against Aspergillus fumigatus, one of the most ubiquitous opportunistic human fungal pathogens. Previously, it has been shown that the alkaline protease Alp1p secreted from A. fumigatus mycelia degrades the complement components C3, C4, and C5. However, it remains unclear how the fungal spores (i.e. conidia) defend themselves against the activities of the complement system immediately after inhalation into the lung. Here, we show that A. fumigatus conidia contain a metalloprotease Mep1p, which is released upon conidial contact with collagen and inactivates all three complement pathways. In particular, Mep1p efficiently inactivated the major complement components C3, C4, and C5 and their activation products (C3a, C4a, and C5a) as well as the pattern-recognition molecules MBL and ficolin-1, either by directly cleaving them or by cleaving them to a form that is further broken down by other proteases of the complement system. Moreover, incubation of Mep1p with human serum significantly inhibited the complement hemolytic activity and conidial opsonization by C3b and their subsequent phagocytosis by macrophages. Together, these results indicate that Mep1p associated with and released from A. fumigatus conidia likely facilitates early immune evasion by disarming the complement defense in the human host.


Assuntos
Aspergillus fumigatus/imunologia , Complemento C3/genética , Complemento C4/genética , Complemento C5/genética , Aspergilose Pulmonar Invasiva/imunologia , Metaloendopeptidases/imunologia , Animais , Aspergillus fumigatus/crescimento & desenvolvimento , Aspergillus fumigatus/patogenicidade , Colágeno/genética , Colágeno/imunologia , Complemento C3/metabolismo , Complemento C4/metabolismo , Complemento C5/metabolismo , Modelos Animais de Doenças , Proteínas Fúngicas/genética , Proteínas Fúngicas/imunologia , Regulação da Expressão Gênica , Interações Hospedeiro-Patógeno , Humanos , Evasão da Resposta Imune , Imunidade Inata , Aspergilose Pulmonar Invasiva/genética , Aspergilose Pulmonar Invasiva/microbiologia , Aspergilose Pulmonar Invasiva/patologia , Lectinas/genética , Lectinas/imunologia , Pulmão/imunologia , Pulmão/patologia , Macrófagos/imunologia , Macrófagos/microbiologia , Masculino , Serina Proteases Associadas a Proteína de Ligação a Manose/genética , Serina Proteases Associadas a Proteína de Ligação a Manose/imunologia , Metaloendopeptidases/deficiência , Metaloendopeptidases/genética , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Knockout , Fagocitose , Esporos Fúngicos/crescimento & desenvolvimento , Esporos Fúngicos/imunologia , Esporos Fúngicos/patogenicidade , Ficolinas
14.
J Biol Chem ; 293(13): 4901-4912, 2018 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-29414772

RESUMO

Surfactant protein D (SP-D), a C-type lectin and pattern-recognition soluble factor, plays an important role in immune surveillance to detect and eliminate human pulmonary pathogens. SP-D has been shown to protect against infections with the most ubiquitous airborne fungal pathogen, Aspergillus fumigatus, but the fungal surface component(s) interacting with SP-D is unknown. Here, we show that SP-D binds to melanin pigment on the surface of A. fumigatus dormant spores (conidia). SP-D also exhibited an affinity to two cell-wall polysaccharides of A. fumigatus, galactomannan (GM) and galactosaminogalactan (GAG). The immunolabeling pattern of SP-D was punctate on the conidial surface and was uniform on germinating conidia, in accordance with the localization of melanin, GM, and GAG. We also found that the collagen-like domain of SP-D is involved in its interaction with melanin, whereas its carbohydrate-recognition domain recognized GM and GAG. Unlike un-opsonized conidia, SP-D-opsonized conidia were phagocytosed more efficiently and stimulated the secretion of proinflammatory cytokines by human monocyte-derived macrophages. Furthermore, SP-D-/- mice challenged intranasally with wildtype conidia or melanin ghosts (i.e. hollow melanin spheres) displayed significantly reduced proinflammatory cytokines in the lung compared with wildtype mice. In summary, SP-D binds to melanin present on the dormant A. fumigatus conidial surface, facilitates conidial phagocytosis, and stimulates the host immune response.


Assuntos
Aspergillus fumigatus/imunologia , Polissacarídeos Fúngicos/imunologia , Melaninas/imunologia , Fagocitose , Aspergilose Pulmonar/imunologia , Proteína D Associada a Surfactante Pulmonar/imunologia , Esporos Fúngicos/imunologia , Animais , Aspergillus fumigatus/genética , Polissacarídeos Fúngicos/genética , Melaninas/genética , Camundongos , Camundongos Knockout , Aspergilose Pulmonar/genética , Aspergilose Pulmonar/patologia , Proteína D Associada a Surfactante Pulmonar/genética , Esporos Fúngicos/genética
15.
Eur J Immunol ; 48(5): 757-770, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29313961

RESUMO

Recognition of the fungal cell wall carbohydrate ß-glucan by the host receptor Dectin-1 elicits broad immunomodulatory responses, such as phagocytosis and activation of oxidative burst. These responses are essential for engulfing and killing fungal pathogens. Phagocytic monocytes are key mediators of these early host inflammatory responses to infection. Remarkably, whether phagocytosis of fungal ß-glucan leads to an inflammatory response in human monocytes remains to be established. Here, we show that phagocytosis of heat-killed Candida albicans is essential to trigger inflammation and cytokine release. By contrast, inhibition of actin-dependent phagocytosis of particulate (1-3,1-6)-ß-glucan induces a strong inflammatory signature. Sustained monocyte activation, induced by fungal ß-glucan particles upon actin cytoskeleton disruption, relies on Dectin-1 and results in the classical caspase-1 inflammasome formation through NLRP3, generation of an oxidative burst, NF-κB activation, and increased inflammatory cytokine release. PI3K and NADPH oxidase were crucial for both cytokine secretion and ROS generation, whereas Syk signaling mediated only cytokine production. Our results highlight the mechanism by which phagocytosis tightly controls the activation of phagocytes by fungal pathogens and strongly suggest that actin cytoskeleton dynamics are an essential determinant of the host's susceptibility or resistance to invasive fungal infections.


Assuntos
Candida albicans/imunologia , Candidíase/imunologia , Polissacarídeos Fúngicos/imunologia , Leucócitos Mononucleares/imunologia , Fagocitose/imunologia , beta-Glucanas/imunologia , Citoesqueleto de Actina/metabolismo , Células Cultivadas , Citocinas/metabolismo , Humanos , Lectinas Tipo C/metabolismo , NADPH Oxidases/metabolismo , NF-kappa B/imunologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/imunologia , Fagócitos/imunologia , Fagócitos/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Explosão Respiratória/imunologia
16.
Bioconjug Chem ; 30(6): 1788-1797, 2019 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-31125199

RESUMO

ß-(1,3)-Glucan is one of the antigenic components of the bacterial as well as fungal cell wall. We designed microcapsules (MCs) ligated with ß-(1,3)-glucan, to study its immunomodulatory effect. The MCs were obtained by interfacial polycondensation between diacyl chloride (sebacoyl chloride and terephtaloyl chloride) and diethylenetriamine in organic and aqueous phases, respectively. Planar films were first designed to optimize monomer compositions and to examine the kinetics of film formation. MCs with aqueous fluorescent core were then obtained upon controlled emulsification-polycondensation reactions using optimized monomer compositions and adding fluorescein into the aqueous phase. The selected MC-formulation was grafted with Curdlan, a linear ß-(1,3)-glucan from  Agrobacterium species or branched ß-(1,3)-glucan isolated from the cell wall of Aspergillus fumigatus. These ß-(1,3)-glucan grafted MCs were phagocytosed by human monocyte-derived macrophages, and stimulated cytokine secretion. Moreover, the blocking of dectin-1, a ß-(1,3)-glucan recognizing receptor, did not completely inhibit the phagocytosis of these ß-(1,3)-glucan grafted MCs, suggesting the involvement of other receptors in the recognition and uptake of ß-(1,3)-glucan. Overall, grafted MCs are a useful tool for the study of the mechanism of phagocytosis and immunomodulatory effect of the microbial polysaccharides.


Assuntos
Adjuvantes Imunológicos/farmacologia , Agrobacterium/química , Aspergillus fumigatus/química , Cápsulas , Parede Celular/química , Polissacarídeos/farmacologia , beta-Glucanas/química , Microscopia Eletrônica de Varredura , Reologia
17.
Mol Microbiol ; 105(6): 880-900, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28677124

RESUMO

Aspergillus fumigatus, a ubiquitous human fungal pathogen, produces asexual spores (conidia), which are the main mode of propagation, survival and infection of this human pathogen. In this study, we present the molecular characterization of a novel regulator of conidiogenesis and conidial survival called MybA because the predicted protein contains a Myb DNA binding motif. Cellular localization of the MybA::Gfp fusion and immunoprecipitation of the MybA::Gfp or MybA::3xHa protein showed that MybA is localized to the nucleus. RNA sequencing data and a uidA reporter assay indicated that the MybA protein functions upstream of wetA, vosA and velB, the key regulators involved in conidial maturation. The deletion of mybA resulted in a very significant reduction in the number and viability of conidia. As a consequence, the ΔmybA strain has a reduced virulence in an experimental murine model of aspergillosis. RNA-sequencing and biochemical studies of the ΔmybA strain suggested that MybA protein controls the expression of enzymes involved in trehalose biosynthesis as well as other cell wall and membrane-associated proteins and ROS scavenging enzymes. In summary, MybA protein is a new key regulator of conidiogenesis and conidial maturation and survival, and plays a crucial role in propagation and virulence of A. fumigatus.


Assuntos
Aspergillus fumigatus/genética , Esporos Fúngicos/genética , Aspergilose/microbiologia , Aspergillus fumigatus/metabolismo , Parede Celular/metabolismo , Proteínas Fúngicas/metabolismo , Deleção de Genes , Regulação Fúngica da Expressão Gênica/genética , Humanos , Proteínas de Membrana/metabolismo , Deleção de Sequência , Fatores de Transcrição/metabolismo , Virulência/genética
18.
J Org Chem ; 83(21): 12965-12976, 2018 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-30277398

RESUMO

Biotinylated hepta-, nona- and undeca-α-(1 → 3)-d-glucosides representing long oligosaccharides of α-(1 → 3)-d-glucan, one of the major components of the cell walls of the fungal pathogen Aspergillus fumigatus, were synthesized for the first time via a blockwise strategy. Convergent assembly of the α-(1 → 3)-d-glucan chains was achieved by glycosylation with oligoglucoside derivatives bearing 6- O-benzoyl groups. Those groups are capable of remote α-stereocontrolling participation, making them efficient α-directing tools even in the case of large glycosyl donors. Synthetic biotinylated oligoglucosides (and biotinylated derivatives of previously synthesized tri- and penta-α-(1 → 3)-d-glucosides) loaded on streptavidin microtiter plates were shown to be better recognized by anti-α-(1 → 3)-glucan human polyclonal antibodies and to induce higher cytokine responses upon stimulation of human peripheral blood mononuclear cells than their natural counterpart, α-(1 → 3)-d-glucan, immobilized on a conventional microtiter plate. Attachment of the synthetic oligosaccharides equipped with a hydrophilic spacer via the streptavidin-biotin pair allows better spatial presentation and control of the loading compared to the random sorption of natural α-(1 → 3)-glucan. Increase of oligoglucoside length results in their better recognition and enhancement of cytokine production. Thus, using synthetic α-(1 → 3)-glucan oligosaccharides, we developed an assay for the host immune response that is more sensitive than the assay based on native α-(1 → 3)-glucan.


Assuntos
Anticorpos Monoclonais/imunologia , Aspergillus fumigatus , Parede Celular/química , Citocinas/metabolismo , Glucanos/imunologia , Glucosídeos/síntese química , Biotinilação , Glucanos/química , Humanos , Leucócitos Mononucleares/efeitos dos fármacos , Leucócitos Mononucleares/metabolismo
19.
J Infect Dis ; 216(10): 1281-1294, 2017 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-28968869

RESUMO

Background: Human dendritic cell (DC) response to α-(1,3)-glucan polysaccharide of Aspergillus fumigatus and ensuing CD4+ T-cell polarization are poorly characterized. Methods: α-(1,3)-Glucan was isolated from A. fumigatus conidia and mycelia cell wall. For the analysis of polarization, DCs and autologous naive CD4+ T cells were cocultured. Phenotype of immune cells was analyzed by flow cytometry, and cytokines by enzyme-linked immunosorbent assay (ELISA). Blocking antibodies were used to dissect the role of Toll-like receptor 2 (TLR2) and programmed death-ligand 1 (PD-L1) in regulating α-(1,3)-glucan-mediated DC activation and T-cell responses. DCs from TLR2-deficient mice were additionally used to consolidate the findings. Results: α-(1,3)-Glucan induced the maturation of DCs and was dependent in part on TLR2. "α-(1,3)-Glucan-educated" DCs stimulated the activation of naive T cells and polarized a subset of these cells into CD4+CD25+FoxP3+ regulatory T cells (Tregs). Mechanistically, Treg stimulation by α-(1,3)-glucan was dependent on the PD-L1 pathway that negatively regulated interferon-gamma (IFN-γ) secretion. Short α-(1,3)-oligosaccharides lacked the capacity to induce maturation of DCs but significantly blocked α-(1,3)-glucan-induced Treg polarization. Conclusions: PD-L1 dictates the balance between Treg and IFN-γ responses induced by α-(1,3)-glucan. Our data provide a rationale for the exploitation of immunotherapeutic approaches that target PD-1-PD-L1 to enhance protective immune responses to A. fumigatus infections.


Assuntos
Aspergillus fumigatus/imunologia , Antígeno B7-H1/genética , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Expressão Gênica , Glucanos/imunologia , Ativação Linfocitária/imunologia , Linfócitos T Reguladores/imunologia , Animais , Biomarcadores , Citocinas/metabolismo , Humanos , Interferon gama/metabolismo , Camundongos , Camundongos Knockout , Linfócitos T Auxiliares-Indutores/imunologia , Linfócitos T Auxiliares-Indutores/metabolismo , Linfócitos T Reguladores/metabolismo
20.
Cell Microbiol ; 18(9): 1285-93, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27306610

RESUMO

The fungal cell wall is a rigid structure because of fibrillar and branched ß-(1,3)-glucan linked to chitin. Softening of the cell wall is an essential phenomenon during fungal morphogenesis, wherein rigid cell wall structures are cleaved by glycosylhydrolases. During the search for glycosylhydrolases acting on ß-(1,3)-glucan, we identified seven genes in the Aspergillus fumigatus genome coding for potential endo-ß-(1,3)-glucanase. ENG1 (previously characterized and named ENGL1, Mouyna et al., ), belongs to the Glycoside-Hydrolase 81 (GH81) family, while ENG2 to ENG7, to GH16 family. ENG1 and four GH16 genes (ENG2-5) were expressed in the resting conidia as well as during germination, suggesting an essential role during A. fumigatus morphogenesis. Here, we report the effect of sequential deletion of AfENG2-5 (GH16) followed by AfENG1 (GH81) deletion in the Δeng2,3,4,5 mutant. The Δeng1,2,3,4,5 mutant showed conidial defects, with linear chains of conidia unable to separate while the germination rate was not affected. These results show, for the first time in a filamentous fungus, that endo ß-(1,3)-glucanases are essential for proper conidial cell wall assembly and thus segregation of conidia during conidiation.


Assuntos
Aspergillus fumigatus/enzimologia , Parede Celular/enzimologia , Proteínas Fúngicas/fisiologia , Glicosídeo Hidrolases/fisiologia , Esporos Fúngicos/enzimologia , Aspergillus fumigatus/crescimento & desenvolvimento , Aspergillus fumigatus/ultraestrutura , Configuração de Carboidratos , Parede Celular/ultraestrutura , Glicosilação , Morfogênese , Esporos Fúngicos/crescimento & desenvolvimento , Esporos Fúngicos/ultraestrutura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA