Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 100
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Nat Immunol ; 18(7): 813-823, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28530713

RESUMO

The transcriptional programs that guide lymphocyte differentiation depend on the precise expression and timing of transcription factors (TFs). The TF BACH2 is essential for T and B lymphocytes and is associated with an archetypal super-enhancer (SE). Single-nucleotide variants in the BACH2 locus are associated with several autoimmune diseases, but BACH2 mutations that cause Mendelian monogenic primary immunodeficiency have not previously been identified. Here we describe a syndrome of BACH2-related immunodeficiency and autoimmunity (BRIDA) that results from BACH2 haploinsufficiency. Affected subjects had lymphocyte-maturation defects that caused immunoglobulin deficiency and intestinal inflammation. The mutations disrupted protein stability by interfering with homodimerization or by causing aggregation. We observed analogous lymphocyte defects in Bach2-heterozygous mice. More generally, we observed that genes that cause monogenic haploinsufficient diseases were substantially enriched for TFs and SE architecture. These findings reveal a previously unrecognized feature of SE architecture in Mendelian diseases of immunity: heterozygous mutations in SE-regulated genes identified by whole-exome/genome sequencing may have greater significance than previously recognized.


Assuntos
Doenças Autoimunes/genética , Fatores de Transcrição de Zíper de Leucina Básica/genética , Síndromes de Imunodeficiência/genética , Corticosteroides/uso terapêutico , Adulto , Doenças Autoimunes/complicações , Colite/complicações , Colite/genética , Colite/patologia , Feminino , Febre/complicações , Febre/tratamento farmacológico , Febre/genética , Haploinsuficiência , Heterozigoto , Humanos , Síndromes de Imunodeficiência/complicações , Linfopenia/complicações , Linfopenia/genética , Masculino , Pessoa de Meia-Idade , Mutação , Pancitopenia/complicações , Pancitopenia/tratamento farmacológico , Pancitopenia/genética , Linhagem , Polimorfismo de Nucleotídeo Único , Recidiva , Infecções Respiratórias/complicações , Infecções Respiratórias/diagnóstico por imagem , Infecções Respiratórias/genética , Esplenomegalia/complicações , Esplenomegalia/genética , Síndrome , Tomografia Computadorizada por Raios X , Adulto Jovem
2.
Cell ; 154(3): 691-703, 2013 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-23890820

RESUMO

Large numbers of inbred laboratory rat strains have been developed for a range of complex disease phenotypes. To gain insights into the evolutionary pressures underlying selection for these phenotypes, we sequenced the genomes of 27 rat strains, including 11 models of hypertension, diabetes, and insulin resistance, along with their respective control strains. Altogether, we identified more than 13 million single-nucleotide variants, indels, and structural variants across these rat strains. Analysis of strain-specific selective sweeps and gene clusters implicated genes and pathways involved in cation transport, angiotensin production, and regulators of oxidative stress in the development of cardiovascular disease phenotypes in rats. Many of the rat loci that we identified overlap with previously mapped loci for related traits in humans, indicating the presence of shared pathways underlying these phenotypes in rats and humans. These data represent a step change in resources available for evolutionary analysis of complex traits in disease models.


Assuntos
Ratos/classificação , Ratos/genética , Animais , Modelos Animais de Doenças , Genoma , Fenótipo , Filogenia , Polimorfismo de Nucleotídeo Único , Ratos Endogâmicos
3.
Nature ; 583(7814): 96-102, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32581362

RESUMO

Most patients with rare diseases do not receive a molecular diagnosis and the aetiological variants and causative genes for more than half such disorders remain to be discovered1. Here we used whole-genome sequencing (WGS) in a national health system to streamline diagnosis and to discover unknown aetiological variants in the coding and non-coding regions of the genome. We generated WGS data for 13,037 participants, of whom 9,802 had a rare disease, and provided a genetic diagnosis to 1,138 of the 7,065 extensively phenotyped participants. We identified 95 Mendelian associations between genes and rare diseases, of which 11 have been discovered since 2015 and at least 79 are confirmed to be aetiological. By generating WGS data of UK Biobank participants2, we found that rare alleles can explain the presence of some individuals in the tails of a quantitative trait for red blood cells. Finally, we identified four novel non-coding variants that cause disease through the disruption of transcription of ARPC1B, GATA1, LRBA and MPL. Our study demonstrates a synergy by using WGS for diagnosis and aetiological discovery in routine healthcare.


Assuntos
Internacionalidade , Programas Nacionais de Saúde , Doenças Raras/diagnóstico , Doenças Raras/genética , Sequenciamento Completo do Genoma , Complexo 2-3 de Proteínas Relacionadas à Actina/genética , Proteínas Adaptadoras de Transdução de Sinal/genética , Alelos , Bases de Dados Factuais , Eritrócitos/metabolismo , Fator de Transcrição GATA1/genética , Humanos , Fenótipo , Locos de Características Quantitativas , Receptores de Trombopoetina/genética , Medicina Estatal , Reino Unido
4.
J Med Genet ; 61(3): 232-238, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-37813462

RESUMO

BACKGROUND: The Ehlers-Danlos syndromes (EDS) are heritable disorders of connective tissue (HDCT), reclassified in the 2017 nosology into 13 subtypes. The genetic basis for hypermobile Ehlers-Danlos syndrome (hEDS) remains unknown. METHODS: Whole exome sequencing (WES) was undertaken on 174 EDS patients recruited from a national diagnostic service for complex EDS and a specialist clinic for hEDS. Patients had already undergone expert phenotyping, laboratory investigation and gene sequencing, but were without a genetic diagnosis. Filtered WES data were reviewed for genes underlying Mendelian disorders and loci reported in EDS linkage, transcriptome and genome-wide association studies (GWAS). A genetic burden analysis (Minor Allele Frequency (MAF) <0.05) incorporating 248 Avon Longitudinal Study of Parents and Children (ALSPAC) controls sequenced as part of the UK10K study was undertaken using TASER methodology. RESULTS: Heterozygous pathogenic (P) or likely pathogenic (LP) variants were identified in known EDS and Loeys-Dietz (LDS) genes. Multiple variants of uncertain significance where segregation and functional analysis may enable reclassification were found in genes associated with EDS, LDS, heritable thoracic aortic disease (HTAD), Mendelian disorders with EDS symptomatology and syndromes with EDS-like features. Genetic burden analysis revealed a number of novel loci, although none reached the threshold for genome-wide significance. Variants with biological plausibility were found in genes and pathways not currently associated with EDS or HTAD. CONCLUSIONS: We demonstrate the clinical utility of large panel-based sequencing and WES for patients with complex EDS in distinguishing rare EDS subtypes, LDS and related syndromes. Although many of the P and LP variants reported in this cohort would be identified with current panel testing, they were not at the time of this study, highlighting the use of extended panels and WES as a clinical tool for complex EDS. Our results are consistent with the complex genetic architecture of EDS and suggest a number of novel hEDS and HTAD candidate genes and pathways.


Assuntos
Doenças do Tecido Conjuntivo , Síndrome de Ehlers-Danlos , Criança , Humanos , Estudo de Associação Genômica Ampla , Estudos Longitudinais , Síndrome de Ehlers-Danlos/diagnóstico , Síndrome de Ehlers-Danlos/genética
5.
Proc Natl Acad Sci U S A ; 119(8)2022 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-35131896

RESUMO

Orkney was a major cultural center during the Neolithic, 3800 to 2500 BC. Farming flourished, permanent stone settlements and chambered tombs were constructed, and long-range contacts were sustained. From ∼3200 BC, the number, density, and extravagance of settlements increased, and new ceremonial monuments and ceramic styles, possibly originating in Orkney, spread across Britain and Ireland. By ∼2800 BC, this phenomenon was waning, although Neolithic traditions persisted to at least 2500 BC. Unlike elsewhere in Britain, there is little material evidence to suggest a Beaker presence, suggesting that Orkney may have developed along an insular trajectory during the second millennium BC. We tested this by comparing new genomic evidence from 22 Bronze Age and 3 Iron Age burials in northwest Orkney with Neolithic burials from across the archipelago. We identified signals of inward migration on a scale unsuspected from the archaeological record: As elsewhere in Bronze Age Britain, much of the population displayed significant genome-wide ancestry deriving ultimately from the Pontic-Caspian Steppe. However, uniquely in northern and central Europe, most of the male lineages were inherited from the local Neolithic. This suggests that some male descendants of Neolithic Orkney may have remained distinct well into the Bronze Age, although there are signs that this had dwindled by the Iron Age. Furthermore, although the majority of mitochondrial DNA lineages evidently arrived afresh with the Bronze Age, we also find evidence for continuity in the female line of descent from Mesolithic Britain into the Bronze Age and even to the present day.


Assuntos
DNA Mitocondrial/genética , Migração Humana/história , Herança Paterna/genética , Arqueologia , DNA Antigo/análise , Inglaterra , Europa (Continente) , Feminino , Fósseis , Pool Gênico , Genoma Humano/genética , Genômica , Haplótipos , História Antiga , História Medieval , Humanos , Irlanda , Masculino , Escócia
6.
BMC Genomics ; 25(1): 651, 2024 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-38951798

RESUMO

BACKGROUND: Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease affecting over 300,000 people worldwide. It is characterized by the progressive decline of the nervous system that leads to the weakening of muscles which impacts physical function. Approximately, 15% of individuals diagnosed with ALS have a known genetic variant that contributes to their disease. As therapies that slow or prevent symptoms continue to develop, such as antisense oligonucleotides, it is important to discover novel genes that could be targets for treatment. Additionally, as cohorts continue to grow, performing analyses in ALS subtypes, such as primary lateral sclerosis (PLS), becomes possible due to an increase in power. These analyses could highlight novel pathways in disease manifestation. METHODS: Building on our previous discoveries using rare variant association analyses, we conducted rare variant burden testing on a substantially larger multi-ethnic cohort of 6,970 ALS patients, 166 PLS patients, and 22,524 controls. We used intolerant domain percentiles based on sub-region Residual Variation Intolerance Score (subRVIS) that have been described previously in conjunction with gene based collapsing approaches to conduct burden testing to identify genes that associate with ALS and PLS. RESULTS: A gene based collapsing model showed significant associations with SOD1, TARDBP, and TBK1 (OR = 19.18, p = 3.67 × 10-39; OR = 4.73, p = 2 × 10-10; OR = 2.3, p = 7.49 × 10-9, respectively). These genes have been previously associated with ALS. Additionally, a significant novel control enriched gene, ALKBH3 (p = 4.88 × 10-7), was protective for ALS in this model. An intolerant domain-based collapsing model showed a significant improvement in identifying regions in TARDBP that associated with ALS (OR = 10.08, p = 3.62 × 10-16). Our PLS protein truncating variant collapsing analysis demonstrated significant case enrichment in ANTXR2 (p = 8.38 × 10-6). CONCLUSIONS: In a large multi-ethnic cohort of 6,970 ALS patients, collapsing analyses validated known ALS genes and identified a novel potentially protective gene, ALKBH3. A first-ever analysis in 166 patients with PLS found a candidate association with loss-of-function mutations in ANTXR2.


Assuntos
Esclerose Lateral Amiotrófica , Feminino , Humanos , Masculino , Esclerose Lateral Amiotrófica/genética , Etnicidade/genética , Predisposição Genética para Doença , Variação Genética , População Europeia , População do Leste Asiático , População Africana , Hispânico ou Latino , População do Oriente Médio , População do Sul da Ásia
7.
J Pathol ; 257(3): 300-313, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35239186

RESUMO

P2RX7, an ionotropic receptor for extracellular adenosine triphosphate (ATP), is expressed on immune cells, including macrophages, monocytes, and dendritic cells and is upregulated on nonimmune cells following injury. P2RX7 plays a role in many biological processes, including production of proinflammatory cytokines such as interleukin (IL)-1ß via the canonical inflammasome pathway. P2RX7 has been shown to be important in inflammation and fibrosis and may also play a role in autoimmunity. We have developed and phenotyped a novel P2RX7 knockout (KO) inbred rat strain and, taking advantage of the human-resembling unique histopathological features of rat models of glomerulonephritis, we induced three models of disease: nephrotoxic nephritis, experimental autoimmune glomerulonephritis, and experimental autoimmune vasculitis. We found that deletion of P2RX7 does not protect rats from models of experimental glomerulonephritis or the development of autoimmunity. Notably, treatment with A-438079, a P2RX7 antagonist, was equally protective in WKY WT and P2RX7 KO rats, revealing its 'off-target' properties. We identified a novel ATP/P2RX7/K+ efflux-independent and caspase-1/8-dependent pathway for the production of IL-1ß in rat dendritic cells, which was absent in macrophages. Taken together, these results comprehensively establish that inflammation and autoimmunity in glomerulonephritis is independent of P2RX7 and reveals the off-target properties of drugs previously known as selective P2RX7 antagonists. Rat mononuclear phagocytes may be able to utilise an 'alternative inflammasome' pathway to produce IL-1ß independently of P2RX7, which may account for the susceptibility of P2RX7 KO rats to inflammation and autoimmunity in glomerulonephritis. © 2022 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.


Assuntos
Glomerulonefrite , Receptores Purinérgicos P2X7 , Vasculite , Trifosfato de Adenosina/metabolismo , Animais , Caspase 1/metabolismo , Caspases , Inflamassomos/metabolismo , Inflamação/metabolismo , Inflamação/patologia , Interleucina-1beta/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Ratos , Ratos Endogâmicos WKY , Receptores Purinérgicos P2X7/metabolismo , Vasculite/metabolismo , Vasculite/patologia
8.
PLoS Genet ; 15(11): e1008480, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31765389

RESUMO

Human population isolates provide a snapshot of the impact of historical demographic processes on population genetics. Such data facilitate studies of the functional impact of rare sequence variants on biomedical phenotypes, as strong genetic drift can result in higher frequencies of variants that are otherwise rare. We present the first whole genome sequencing (WGS) study of the VIKING cohort, a representative collection of samples from the isolated Shetland population in northern Scotland, and explore how its genetic characteristics compare to a mainland Scottish population. Our analyses reveal the strong contributions played by the founder effect and genetic drift in shaping genomic variation in the VIKING cohort. About one tenth of all high-quality variants discovered are unique to the VIKING cohort or are seen at frequencies at least ten fold higher than in more cosmopolitan control populations. Multiple lines of evidence also suggest relaxation of purifying selection during the evolutionary history of the Shetland isolate. We demonstrate enrichment of ultra-rare VIKING variants in exonic regions and for the first time we also show that ultra-rare variants are enriched within regulatory regions, particularly promoters, suggesting that gene expression patterns may diverge relatively rapidly in human isolates.


Assuntos
Demografia , Variação Genética/genética , Genética Populacional , Sequências Reguladoras de Ácido Nucleico/genética , Regiões 5' não Traduzidas/genética , Alelos , Cromatina/genética , Europa (Continente) , Éxons/genética , Efeito Fundador , Deriva Genética , Estudo de Associação Genômica Ampla , Genômica , Humanos , Fenótipo , Polimorfismo de Nucleotídeo Único/genética , Regiões Promotoras Genéticas/genética , Escócia , Sequenciamento Completo do Genoma
9.
Circulation ; 141(19): 1570-1587, 2020 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-32392100

RESUMO

Inherited thoracic aortopathies denote a group of congenital conditions that predispose to disease of the thoracic aorta. Aortic wall weakness and abnormal aortic hemodynamic profiles predispose these patients to dilatation of the thoracic aorta, which is generally silent but can precipitate aortic dissection or rupture with devastating and often fatal consequences. Current strategies to assess the future risk of aortic dissection or rupture are based primarily on monitoring aortic diameter. However, diameter alone is a poor predictor of risk, with many patients experiencing dissection or rupture below current intervention thresholds. Developing tools that improve the risk assessment of those with aortopathy is internationally regarded as a research priority. A robust understanding of the molecular pathways that lead to aortic wall weakness is required to identify biomarkers and therapeutic targets that could improve patient management. Here, we summarize the current understanding of the genetically determined mechanisms underlying inherited aortopathies and critically appraise the available blood biomarkers, imaging techniques, and therapeutic targets that have shown promise for improving the management of patients with these important and potentially fatal conditions.


Assuntos
Aorta Torácica , Aneurisma da Aorta Torácica/genética , Dissecção Aórtica/genética , Ruptura Aórtica/genética , Dissecção Aórtica/diagnóstico por imagem , Dissecção Aórtica/fisiopatologia , Dissecção Aórtica/terapia , Animais , Aorta Torácica/metabolismo , Aorta Torácica/patologia , Aorta Torácica/fisiopatologia , Aorta Torácica/cirurgia , Aneurisma da Aorta Torácica/diagnóstico por imagem , Aneurisma da Aorta Torácica/fisiopatologia , Aneurisma da Aorta Torácica/terapia , Ruptura Aórtica/diagnóstico por imagem , Ruptura Aórtica/fisiopatologia , Ruptura Aórtica/terapia , Biomarcadores/metabolismo , Predisposição Genética para Doença , Humanos , Terapia de Alvo Molecular , Fenótipo , Valor Preditivo dos Testes , Prognóstico , Medição de Risco , Fatores de Risco , Transdução de Sinais , Pesquisa Translacional Biomédica , Procedimentos Cirúrgicos Vasculares
10.
Am J Hum Genet ; 103(2): 213-220, 2018 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-30075112

RESUMO

Pathogenic variants in BRCA1 or BRCA2 are identified in ∼20% of families with multiple individuals affected by early-onset breast and/or ovarian cancer. Extensive searches for additional highly penetrant genes or alternative mutational mechanisms altering BRCA1 or BRCA2 have not explained the missing heritability. Here, we report a dominantly inherited 5' UTR variant associated with epigenetic BRCA1 silencing due to promoter hypermethylation in two families affected by breast and ovarian cancer. BRCA1 promoter methylation of ten CpG dinucleotides in families who are affected by breast and/or ovarian cancer but do not have germline BRCA1 or BRCA2 pathogenic variants was assessed by pyrosequencing and clonal bisulfite sequencing. RNA and DNA sequencing of BRCA1 from lymphocytes was undertaken to establish allelic expression and the presence of germline variants. BRCA1 promoter hypermethylation was identified in 2 of 49 families in which multiple women are affected by grade 3 breast cancer or high-grade serous ovarian cancer. Soma-wide BRCA1 promoter hypermethylation was confirmed in blood, buccal mucosa, and hair follicles. Pyrosequencing showed that DNA was ∼50% methylated, consistent with the silencing of one allele, which was confirmed by clonal bisulfite sequencing. RNA sequencing revealed the allelic loss of BRCA1 expression in both families and that this loss of expression segregated with the heterozygous variant c.-107A>T in the BRCA1 5' UTR. Our results establish a mechanism whereby familial breast and ovarian cancer is caused by an in cis 5' UTR variant associated with epigenetic silencing of the BRCA1 promoter in two independent families. We propose that methylation analyses be undertaken to establish the frequency of this mechanism in families affected by early-onset breast and/or ovarian cancer without a BRCA1 or BRCA2 pathogenic variant.


Assuntos
Regiões 5' não Traduzidas/genética , Proteína BRCA1/genética , Neoplasias da Mama/genética , Metilação de DNA/genética , Mutação em Linhagem Germinativa/genética , Neoplasias Ovarianas/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Proteína BRCA2/genética , Epigênese Genética/genética , Feminino , Predisposição Genética para Doença/genética , Humanos , Pessoa de Meia-Idade , Regiões Promotoras Genéticas/genética
11.
Nature ; 524(7565): 356-60, 2015 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-26258299

RESUMO

The typical response of the adult mammalian pulmonary circulation to a low oxygen environment is vasoconstriction and structural remodelling of pulmonary arterioles, leading to chronic elevation of pulmonary artery pressure (pulmonary hypertension) and right ventricular hypertrophy. Some mammals, however, exhibit genetic resistance to hypoxia-induced pulmonary hypertension. We used a congenic breeding program and comparative genomics to exploit this variation in the rat and identified the gene Slc39a12 as a major regulator of hypoxia-induced pulmonary vascular remodelling. Slc39a12 encodes the zinc transporter ZIP12. Here we report that ZIP12 expression is increased in many cell types, including endothelial, smooth muscle and interstitial cells, in the remodelled pulmonary arterioles of rats, cows and humans susceptible to hypoxia-induced pulmonary hypertension. We show that ZIP12 expression in pulmonary vascular smooth muscle cells is hypoxia dependent and that targeted inhibition of ZIP12 inhibits the rise in intracellular labile zinc in hypoxia-exposed pulmonary vascular smooth muscle cells and their proliferation in culture. We demonstrate that genetic disruption of ZIP12 expression attenuates the development of pulmonary hypertension in rats housed in a hypoxic atmosphere. This new and unexpected insight into the fundamental role of a zinc transporter in mammalian pulmonary vascular homeostasis suggests a new drug target for the pharmacological management of pulmonary hypertension.


Assuntos
Proteínas de Transporte de Cátions/metabolismo , Hipertensão Pulmonar/metabolismo , Hipóxia/metabolismo , Músculo Liso Vascular/metabolismo , Animais , Animais Congênicos , Arteríolas/metabolismo , Proteínas de Transporte de Cátions/deficiência , Proteínas de Transporte de Cátions/genética , Bovinos , Hipóxia Celular , Proliferação de Células , Células Cultivadas , Cromossomos de Mamíferos/genética , Doença Crônica , Feminino , Técnicas de Silenciamento de Genes , Homeostase , Humanos , Hipertensão Pulmonar/genética , Hipóxia/genética , Espaço Intracelular/metabolismo , Masculino , Músculo Liso Vascular/citologia , Ratos , Ratos Endogâmicos F344 , Ratos Endogâmicos WKY , Zinco/metabolismo
12.
Am J Hum Genet ; 99(5): 1005-1014, 2016 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-27745832

RESUMO

Periodontal Ehlers-Danlos syndrome (pEDS) is an autosomal-dominant disorder characterized by early-onset periodontitis leading to premature loss of teeth, joint hypermobility, and mild skin findings. A locus was mapped to an approximately 5.8 Mb region at 12p13.1 but no candidate gene was identified. In an international consortium we recruited 19 independent families comprising 107 individuals with pEDS to identify the locus, characterize the clinical details in those with defined genetic causes, and try to understand the physiological basis of the condition. In 17 of these families, we identified heterozygous missense or in-frame insertion/deletion mutations in C1R (15 families) or C1S (2 families), contiguous genes in the mapped locus that encode subunits C1r and C1s of the first component of the classical complement pathway. These two proteins form a heterotetramer that then combines with six C1q subunits. Pathogenic variants involve the subunit interfaces or inter-domain hinges of C1r and C1s and are associated with intracellular retention and mild endoplasmic reticulum enlargement. Clinical features of affected individuals in these families include rapidly progressing periodontitis with onset in the teens or childhood, a previously unrecognized lack of attached gingiva, pretibial hyperpigmentation, skin and vascular fragility, easy bruising, and variable musculoskeletal symptoms. Our findings open a connection between the inflammatory classical complement pathway and connective tissue homeostasis.


Assuntos
Complemento C1r/genética , Complemento C1s/genética , Síndrome de Ehlers-Danlos/genética , Deleção de Genes , Mutação de Sentido Incorreto , Periodontite/genética , Adolescente , Adulto , Criança , Pré-Escolar , Mapeamento Cromossômico , Cromossomos Humanos Par 12/genética , Síndrome de Ehlers-Danlos/diagnóstico , Retículo Endoplasmático/genética , Retículo Endoplasmático/metabolismo , Exoma , Feminino , Loci Gênicos , Humanos , Masculino , Linhagem , Periodontite/diagnóstico , Conformação Proteica , Adulto Jovem
13.
Genet Med ; 20(11): 1414-1422, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-29543232

RESUMO

PURPOSE: Thoracic aortic aneurysm/aortic dissection (TAAD) is a disorder with highly variable age of onset and phenotype. We sought to determine the prevalence of pathogenic variants in TAAD-associated genes in a mixed cohort of sporadic and familial TAAD patients and identify relevant genotype-phenotype relationships. METHODS: We used a targeted polymerase chain reaction and next-generation sequencing-based panel for genetic analysis of 15 TAAD-associated genes in 1,025 unrelated TAAD cases. RESULTS: We identified 49 pathogenic or likely pathogenic (P/LP) variants in 47 cases (4.9% of those successfully sequenced). Almost half of the variants were in nonsyndromic cases with no known family history of aortic disease. Twenty-five variants were within FBN1 and two patients were found to harbor two P/LP variants. Presence of a related syndrome, younger age at presentation, family history of aortic disease, and involvement of the ascending aorta increased the risk of carrying a P/LP variant. CONCLUSION: Given the poor prognosis of TAAD that is undiagnosed prior to acute rupture or dissection, genetic analysis of both familial and sporadic cases of TAAD will lead to new diagnoses, more informed management, and possibly reduced mortality through earlier, preclinical diagnosis in genetically determined cases and their family members.


Assuntos
Aneurisma da Aorta Torácica/genética , Colágeno Tipo I/genética , Fibrilina-1/genética , Receptor do Fator de Crescimento Transformador beta Tipo I/genética , Adolescente , Adulto , Idade de Início , Idoso , Aorta Torácica/fisiopatologia , Aneurisma da Aorta Torácica/diagnóstico , Aneurisma da Aorta Torácica/fisiopatologia , Criança , Cadeia alfa 1 do Colágeno Tipo I , Feminino , Estudos de Associação Genética , Predisposição Genética para Doença , Testes Genéticos , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Masculino , Pessoa de Meia-Idade , Mutação , Linhagem , Análise de Sequência de DNA
14.
Nat Rev Genet ; 12(8): 575-82, 2011 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-21765459

RESUMO

Model organisms have played a huge part in the history of studies of human genetic disease, both in identifying disease genes and characterizing their normal and abnormal functions. But is the importance of model organisms diminishing? The direct discovery of disease genes and variants in humans has been revolutionized, first by genome-wide association studies and now by whole-genome sequencing. Not only is it now much easier to directly identify potential disease genes in humans, but the genetic architecture that is being revealed in many cases is hard to replicate in model organisms. Furthermore, disease modelling can be done with increasing effectiveness using human cells. Where does this leave non-human models of disease?


Assuntos
Estudos de Associação Genética/tendências , Genoma Humano , Modelos Animais , Animais , Mapeamento Cromossômico , Humanos , Modelos Biológicos , Polimorfismo de Nucleotídeo Único , Análise de Sequência de DNA
15.
J Immunol ; 194(10): 4705-4716, 2015 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-25840911

RESUMO

Epoxygenases belong to the cytochrome P450 family. They generate epoxyeicosatrienoic acids, which are known to have anti-inflammatory effects, but little is known about their role in macrophage function. By high-throughput sequencing of RNA in primary macrophages derived from rodents and humans, we establish the relative expression of epoxygenases in these cells. Zinc-finger nuclease-mediated targeted gene deletion of the major rat macrophage epoxygenase Cyp2j4 (ortholog of human CYP2J2) resulted in reduced epoxyeicosatrienoic acid synthesis. Cyp2j4(-/-) macrophages have relatively increased peroxisome proliferator-activated receptor-γ levels and show a profibrotic transcriptome, displaying overexpression of a specific subset of genes (260 transcripts) primarily involved in extracellular matrix, with fibronectin being the most abundantly expressed transcript. Fibronectin expression is under the control of epoxygenase activity in human and rat primary macrophages. In keeping with the in vitro findings, Cyp2j4(-/-) rats show upregulation of type I collagen following unilateral ureter obstruction of the kidney, and quantitative proteomics analysis (liquid chromatography-tandem mass spectrometry) showed increased renal type I collagen and fibronectin protein abundance resulting from experimentally induced crescentic glomerulonephritis in these rats. Taken together, these results identify the rat epoxygenase Cyp2j4 as a determinant of a profibrotic macrophage transcriptome that could have implications in various inflammatory conditions, depending on macrophage function.


Assuntos
Sistema Enzimático do Citocromo P-450/metabolismo , Fibrose/enzimologia , Fibrose/genética , Macrófagos/enzimologia , Animais , Western Blotting , Cromatografia Líquida , Citocromo P-450 CYP2J2 , Família 2 do Citocromo P450 , Modelos Animais de Doenças , Ensaio de Imunoadsorção Enzimática , Técnicas de Inativação de Genes , Glomerulonefrite/enzimologia , Glomerulonefrite/genética , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Masculino , Interferência de RNA , Ratos , Ratos Endogâmicos WKY , Reação em Cadeia da Polimerase em Tempo Real , Espectrometria de Massas em Tandem , Transcriptoma
16.
PLoS Genet ; 10(12): e1004813, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25474312

RESUMO

Epigenetic marks such as cytosine methylation are important determinants of cellular and whole-body phenotypes. However, the extent of, and reasons for inter-individual differences in cytosine methylation, and their association with phenotypic variation are poorly characterised. Here we present the first genome-wide study of cytosine methylation at single-nucleotide resolution in an animal model of human disease. We used whole-genome bisulfite sequencing in the spontaneously hypertensive rat (SHR), a model of cardiovascular disease, and the Brown Norway (BN) control strain, to define the genetic architecture of cytosine methylation in the mammalian heart and to test for association between methylation and pathophysiological phenotypes. Analysis of 10.6 million CpG dinucleotides identified 77,088 CpGs that were differentially methylated between the strains. In F1 hybrids we found 38,152 CpGs showing allele-specific methylation and 145 regions with parent-of-origin effects on methylation. Cis-linkage explained almost 60% of inter-strain variation in methylation at a subset of loci tested for linkage in a panel of recombinant inbred (RI) strains. Methylation analysis in isolated cardiomyocytes showed that in the majority of cases methylation differences in cardiomyocytes and non-cardiomyocytes were strain-dependent, confirming a strong genetic component for cytosine methylation. We observed preferential nucleotide usage associated with increased and decreased methylation that is remarkably conserved across species, suggesting a common mechanism for germline control of inter-individual variation in CpG methylation. In the RI strain panel, we found significant correlation of CpG methylation and levels of serum chromogranin B (CgB), a proposed biomarker of heart failure, which is evidence for a link between germline DNA sequence variation, CpG methylation differences and pathophysiological phenotypes in the SHR strain. Together, these results will stimulate further investigation of the molecular basis of locally regulated variation in CpG methylation and provide a starting point for understanding the relationship between the genetic control of CpG methylation and disease phenotypes.


Assuntos
Doenças Cardiovasculares/genética , Metilação de DNA , Genoma , Miocárdio/metabolismo , Animais , Sequência de Bases , Doenças Cardiovasculares/patologia , Células Cultivadas , Modelos Animais de Doenças , Humanos , Masculino , Miocárdio/patologia , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Polimorfismo de Nucleotídeo Único , Ratos , Ratos Endogâmicos BN , Ratos Endogâmicos SHR , Análise de Sequência de DNA/métodos
17.
PLoS Genet ; 10(2): e1004151, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24586191

RESUMO

Genetic variation in the major histocompatibility complex (MHC) affects CD4∶CD8 lineage commitment and MHC expression. However, the contribution of specific genes in this gene-dense region has not yet been resolved. Nor has it been established whether the same genes regulate MHC expression and T cell selection. Here, we assessed the impact of natural genetic variation on MHC expression and CD4∶CD8 lineage commitment using two genetic models in the rat. First, we mapped Quantitative Trait Loci (QTLs) associated with variation in MHC class I and II protein expression and the CD4∶CD8 T cell ratio in outbred Heterogeneous Stock rats. We identified 10 QTLs across the genome and found that QTLs for the individual traits colocalized within a region spanning the MHC. To identify the genes underlying these overlapping QTLs, we generated a large panel of MHC-recombinant congenic strains, and refined the QTLs to two adjacent intervals of ∼0.25 Mb in the MHC-I and II regions, respectively. An interaction between these intervals affected MHC class I expression as well as negative selection and lineage commitment of CD8 single-positive (SP) thymocytes. We mapped this effect to the transporter associated with antigen processing 2 (Tap2) in the MHC-II region and the classical MHC class I gene(s) (RT1-A) in the MHC-I region. This interaction was revealed by a recombination between RT1-A and Tap2, which occurred in 0.2% of the rats. Variants of Tap2 have previously been shown to influence the antigenicity of MHC class I molecules by altering the MHC class I ligandome. Our results show that a restricted peptide repertoire on MHC class I molecules leads to reduced negative selection of CD8SP cells. To our knowledge, this is the first study showing how a recombination between natural alleles of genes in the MHC influences lineage commitment of T cells.


Assuntos
Transportadores de Cassetes de Ligação de ATP/genética , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Diferenciação Celular/imunologia , Complexo Principal de Histocompatibilidade/genética , Membro 3 da Subfamília B de Transportadores de Cassetes de Ligação de ATP , Alelos , Animais , Apresentação de Antígeno , Diferenciação Celular/genética , Linhagem da Célula , Regulação da Expressão Gênica , Antígenos de Histocompatibilidade/genética , Complexo Principal de Histocompatibilidade/imunologia , Ratos , Recombinação Genética , Seleção Genética
18.
Am J Hum Genet ; 92(1): 28-40, 2013 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-23261299

RESUMO

Reduced FCGR3B copy number is associated with increased risk of systemic lupus erythematosus (SLE). The five FCGR2/FCGR3 genes are arranged across two highly paralogous genomic segments on chromosome 1q23. Previous studies have suggested mechanisms for structural rearrangements at the FCGR2/FCGR3 locus and have proposed mechanisms whereby altered FCGR3B copy number predisposes to autoimmunity, but the high degree of sequence similarity between paralogous segments has prevented precise definition of the molecular events and their functional consequences. To pursue the genomic pathology associated with FCGR3B copy-number variation, we integrated sequencing data from fosmid and bacterial artificial chromosome clones and sequence-captured DNA from FCGR3B-deleted genomes to establish a detailed map of allelic and paralogous sequence variation across the FCGR2/FCGR3 locus. This analysis identified two highly paralogous 24.5 kb blocks within the FCGR2C/FCGR3B/FCGR2B locus that are devoid of nonpolymorphic paralogous sequence variations and that define the limits of the genomic regions in which nonallelic homologous recombination leads to FCGR2C/FCGR3B copy-number variation. Further, the data showed evidence of swapping of haplotype blocks between these highly paralogous blocks that most likely arose from sequential ancestral recombination events across the region. Functionally, we found by flow cytometry, immunoblotting and cDNA sequencing that individuals with FCGR3B-deleted alleles show ectopic presence of FcγRIIb on natural killer (NK) cells. We conclude that FCGR3B deletion juxtaposes the 5'-regulatory sequences of FCGR2C with the coding sequence of FCGR2B, creating a chimeric gene that results in an ectopic accumulation of FcγRIIb on NK cells and provides an explanation for SLE risk associated with reduced FCGR3B gene copy number.


Assuntos
Variações do Número de Cópias de DNA , Lúpus Eritematoso Sistêmico/genética , Receptores de IgG/genética , Mapeamento Cromossômico , Proteínas Ligadas por GPI/genética , Deleção de Genes , Predisposição Genética para Doença , Humanos , Células Matadoras Naturais/metabolismo , Polimorfismo de Nucleotídeo Único
19.
Genet Med ; 18(11): 1119-1127, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27011056

RESUMO

PURPOSE: Ehlers-Danlos syndrome (EDS) comprises a group of overlapping hereditary disorders of connective tissue with significant morbidity and mortality, including major vascular complications. We sought to identify the diagnostic utility of a next-generation sequencing (NGS) panel in a mixed EDS cohort. METHODS: We developed and applied PCR-based NGS assays for targeted, unbiased sequencing of 12 collagen and aortopathy genes to a cohort of 177 unrelated EDS patients. Variants were scored blind to previous genetic testing and then compared with results of previous Sanger sequencing. RESULTS: Twenty-eight pathogenic variants in COL5A1/2, COL3A1, FBN1, and COL1A1 and four likely pathogenic variants in COL1A1, TGFBR1/2, and SMAD3 were identified by the NGS assays. These included all previously detected single-nucleotide and other short pathogenic variants in these genes, and seven newly detected pathogenic or likely pathogenic variants leading to clinically significant diagnostic revisions. Twenty-two variants of uncertain significance were identified, seven of which were in aortopathy genes and required clinical follow-up. CONCLUSION: Unbiased NGS-based sequencing made new molecular diagnoses outside the expected EDS genotype-phenotype relationship and identified previously undetected clinically actionable variants in aortopathy susceptibility genes. These data may be of value in guiding future clinical pathways for genetic diagnosis in EDS.Genet Med 18 11, 1119-1127.


Assuntos
Colágeno/genética , Síndrome de Ehlers-Danlos/diagnóstico , Síndrome de Ehlers-Danlos/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Adolescente , Adulto , Idoso , Criança , Pré-Escolar , Síndrome de Ehlers-Danlos/fisiopatologia , Feminino , Testes Genéticos , Genótipo , Humanos , Masculino , Pessoa de Meia-Idade , Mutação/genética , Patologia Molecular/métodos , Fenótipo , Proteínas Serina-Treonina Quinases/genética , Receptor do Fator de Crescimento Transformador beta Tipo I , Receptores de Fatores de Crescimento Transformadores beta/genética , Adulto Jovem
20.
Nature ; 467(7314): 460-4, 2010 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-20827270

RESUMO

Combined analyses of gene networks and DNA sequence variation can provide new insights into the aetiology of common diseases that may not be apparent from genome-wide association studies alone. Recent advances in rat genomics are facilitating systems-genetics approaches. Here we report the use of integrated genome-wide approaches across seven rat tissues to identify gene networks and the loci underlying their regulation. We defined an interferon regulatory factor 7 (IRF7)-driven inflammatory network (IDIN) enriched for viral response genes, which represents a molecular biomarker for macrophages and which was regulated in multiple tissues by a locus on rat chromosome 15q25. We show that Epstein-Barr virus induced gene 2 (Ebi2, also known as Gpr183), which lies at this locus and controls B lymphocyte migration, is expressed in macrophages and regulates the IDIN. The human orthologous locus on chromosome 13q32 controlled the human equivalent of the IDIN, which was conserved in monocytes. IDIN genes were more likely to associate with susceptibility to type 1 diabetes (T1D)-a macrophage-associated autoimmune disease-than randomly selected immune response genes (P = 8.85 × 10(-6)). The human locus controlling the IDIN was associated with the risk of T1D at single nucleotide polymorphism rs9585056 (P = 7.0 × 10(-10); odds ratio, 1.15), which was one of five single nucleotide polymorphisms in this region associated with EBI2 (GPR183) expression. These data implicate IRF7 network genes and their regulatory locus in the pathogenesis of T1D.


Assuntos
Diabetes Mellitus Tipo 1/genética , Loci Gênicos/genética , Predisposição Genética para Doença/genética , Imunidade Inata/genética , Vírus/imunologia , Animais , Sequência de Bases , Cromossomos Humanos Par 13/genética , Cromossomos de Mamíferos/genética , Diabetes Mellitus Tipo 1/imunologia , Redes Reguladoras de Genes/genética , Estudo de Associação Genômica Ampla , Humanos , Inflamação/genética , Inflamação/imunologia , Fator Regulador 7 de Interferon/imunologia , Macrófagos/imunologia , Macrófagos/metabolismo , Especificidade de Órgãos , Polimorfismo de Nucleotídeo Único/genética , Locos de Características Quantitativas/genética , Ratos , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA