Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
BMC Genomics ; 23(1): 75, 2022 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-35073840

RESUMO

BACKGROUND: Caterpillars from the insect order Lepidoptera are some of the most widespread and destructive agricultural pests. Most of their impact is at the larval stage, where the midgut epithelium mediates the digestion and absorption of an astonishing amount of food. Although this tissue has been the subject of frequent investigation in Lepidoptera, a comprehensive expression atlas has yet to be generated. RESULTS: Here, we perform RNA-sequencing and proteomics on the gut of the polyphagous pest Helicoverpa armigera across, life stages, diet types, and compartments of the anterior-posterior axis. A striking relationship between the structural homology and expression pattern of a group of sugar transporters was observed in the early larval stages. Further comparisons were made among the spatial compartments of the midgut, which suggested a putative role for vATPases and SLC9 transporters in the generation of alkaline conditions in the H. armigera midgut. CONCLUSIONS: This comprehensive resource will aid the scientific community in understanding lepidopteran gut physiology in unprecedented resolution. It is hoped that this study advances the understanding of the lepidopteran midgut and also facilitates functional work in this field.


Assuntos
Mariposas , Animais , Sistema Digestório , Concentração de Íons de Hidrogênio , Larva , Nutrientes
2.
J Cell Physiol ; 236(2): 1529-1544, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32749687

RESUMO

Exosome selectivity mechanisms underlying exosome-target cell interactions and the specific traits affecting their capability to communicate still remain unclear. Moreover, the capacity of exosomes to efficiently deliver their molecular cargos intracellularly needs precise investigation towards establishing functional exosome-based delivery platforms exploitable in the clinical practice. The current study focuses on: (a) exosome production from normal MRC-5 and Vero cells growing in culture, (b) physicochemical characterization by dynamic light scattering (DLS) and cryo-transmission electron microscopy; (c) cellular uptake studies of rhodamine-labeled exosomes in normal and cancer cells, providing to exosomes either "autologous" or "heterologous" cellular delivery environments; and (d) loading exogenous Alexa Fluor 488-labeled siRNA into exosomes for the assessment of their delivering capacity by immunofluorescence in a panel of recipient cells. The data obtained thus far indicate that MRC-5 and Vero exosomes, indeed exhibit an interesting delivering profile, as promising "bio-shuttles," being pharmacologically exploitable in the context of theranostic applications.


Assuntos
Sistemas de Liberação de Medicamentos , Exossomos/química , MicroRNAs/uso terapêutico , RNA Interferente Pequeno/uso terapêutico , Animais , Comunicação Celular/genética , Linhagem Celular Tumoral , Chlorocebus aethiops , Microscopia Crioeletrônica , Exossomos/genética , Humanos , MicroRNAs/química , RNA Interferente Pequeno/química , Células Vero
3.
Proc Biol Sci ; 286(1907): 20191091, 2019 07 24.
Artigo em Inglês | MEDLINE | ID: mdl-31311476

RESUMO

Malaria incidence has halved since the year 2000, with 80% of the reduction attributable to the use of insecticides. However, insecticide resistance is now widespread, is rapidly increasing in spectrum and intensity across Africa, and may be contributing to the increase of malaria incidence in 2018. The role of detoxification enzymes and target site mutations has been documented in the major malaria vector Anopheles gambiae; however, the emergence of striking resistant phenotypes suggests the occurrence of additional mechanisms. By comparing legs, the most relevant insect tissue for insecticide uptake, we show that resistant mosquitoes largely remodel their leg cuticles via enhanced deposition of cuticular proteins and chitin, corroborating a leg-thickening phenotype. Moreover, we show that resistant female mosquitoes seal their leg cuticles with higher total and different relative amounts of cuticular hydrocarbons, compared with susceptible ones. The structural and functional alterations in Anopheles female mosquito legs are associated with a reduced uptake of insecticides, substantially contributing to the resistance phenotype.


Assuntos
Anopheles/fisiologia , Extremidades/fisiologia , Resistência a Inseticidas , Inseticidas/farmacologia , Mosquitos Vetores/fisiologia , Animais , Anopheles/ultraestrutura , Feminino , Lipidômica , Malária/transmissão , Masculino , Microscopia Eletrônica de Transmissão , Mosquitos Vetores/ultraestrutura , Proteoma , Proteômica
4.
Nucleic Acids Res ; 45(W1): W300-W306, 2017 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-28520987

RESUMO

Profiling of proteome dynamics is crucial for understanding cellular behavior in response to intrinsic and extrinsic stimuli and maintenance of homeostasis. Over the last 20 years, mass spectrometry (MS) has emerged as the most powerful tool for large-scale identification and characterization of proteins. Bottom-up proteomics, the most common MS-based proteomics approach, has always been challenging in terms of data management, processing, analysis and visualization, with modern instruments capable of producing several gigabytes of data out of a single experiment. Here, we present ProteoSign, a freely available web application, dedicated in allowing users to perform proteomics differential expression/abundance analysis in a user-friendly and self-explanatory way. Although several non-commercial standalone tools have been developed for post-quantification statistical analysis of proteomics data, most of them are not end-user appealing as they often require very stringent installation of programming environments, third-party software packages and sometimes further scripting or computer programming. To avoid this bottleneck, we have developed a user-friendly software platform accessible via a web interface in order to enable proteomics laboratories and core facilities to statistically analyse quantitative proteomics data sets in a resource-efficient manner. ProteoSign is available at http://bioinformatics.med.uoc.gr/ProteoSign and the source code at https://github.com/yorgodillo/ProteoSign.


Assuntos
Proteômica/métodos , Software , Interpretação Estatística de Dados , Internet , Espectrometria de Massas
5.
Proc Natl Acad Sci U S A ; 112(13): E1577-86, 2015 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-25770217

RESUMO

Physiological processes rely on the regulation of total mRNA levels in a cell. In diploid organisms, the transcriptional activation of one or both alleles of a gene may involve trans-allelic interactions that provide a tight spatial and temporal level of gene expression regulation. The mechanisms underlying such interactions still remain poorly understood. Here, we demonstrate that lipopolysaccharide stimulation of murine macrophages rapidly resulted in the actin-mediated and transient homologous spatial proximity of Tnfα alleles, which was necessary for the mono- to biallelic switch in gene expression. We identified two new complementary long noncoding RNAs transcribed from the TNFα locus and showed that their knockdown had opposite effects in Tnfα spatial proximity and allelic expression. Moreover, the observed spatial proximity of Tnfα alleles depended on pyruvate kinase muscle isoform 2 (PKM2) and T-helper-inducing POZ-Krüppel-like factor (ThPOK). This study suggests a role for lncRNAs in the regulation of somatic homologous spatial proximity and allelic expression control necessary for fine-tuning mammalian immune responses.


Assuntos
Linfotoxina-alfa/genética , Linfotoxina-beta/genética , RNA Longo não Codificante , Ativação Transcricional , Fator de Necrose Tumoral alfa/genética , Alelos , Animais , Proteínas de Transporte/metabolismo , Linhagem Celular , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Hibridização in Situ Fluorescente , Lipopolissacarídeos/química , Macrófagos/metabolismo , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Hormônios Tireóideos/metabolismo , Fatores de Transcrição/metabolismo , Proteínas de Ligação a Hormônio da Tireoide
6.
J Am Chem Soc ; 139(15): 5330-5337, 2017 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-28333455

RESUMO

The full extent of proline (Pro) hydroxylation has yet to be established, as it is largely unexplored in bacteria. We describe here a so far unknown Pro hydroxylation activity which occurs in active sites of polysaccharide deacetylases (PDAs) from bacterial pathogens, modifying the protein backbone at the Cα atom of a Pro residue to produce 2-hydroxyproline (2-Hyp). This process modifies with high specificity a conserved Pro, shares with the deacetylation reaction the same active site and one catalytic residue, and utilizes molecular oxygen as source for the hydroxyl group oxygen of 2-Hyp. By providing additional hydrogen-bonding capacity, the Pro→2-Hyp conversion alters the active site and enhances significantly deacetylase activity, probably by creating a more favorable environment for transition-state stabilization. Our results classify this process as an active-site "maturation", which is highly atypical in being a protein backbone-modifying activity, rather than a side-chain-modifying one.


Assuntos
Amidoidrolases/metabolismo , Bacillus anthracis/enzimologia , Bacillus cereus/enzimologia , Carbono/metabolismo , Prolina/metabolismo , Amidoidrolases/química , Amidoidrolases/isolamento & purificação , Sítios de Ligação , Carbono/química , Cristalografia por Raios X , Ligação de Hidrogênio , Hidroxilação , Modelos Moleculares , Prolina/química
7.
Proteomics ; 16(1): 85-97, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26466526

RESUMO

Biological membranes define cells and cellular compartments and are essential in regulating bidirectional flow of chemicals and signals. Characterizing their protein content therefore is required to determine their function, nevertheless, the comprehensive determination of membrane-embedded sub-proteomes remains challenging. Here, we experimentally characterized the inner membrane proteome (IMP) of the model organism E. coli BL21(DE3). We took advantage of the recent extensive re-annotation of the theoretical E. coli IMP regarding the sub-cellular localization of all its proteins. Using surface proteolysis of IMVs with variable chemical treatments followed by nanoLC-MS/MS analysis, we experimentally identified ∼45% of the expressed IMP in wild type E. coli BL21(DE3) with 242 proteins reported here for the first time. Using modified label-free approaches we quantified 220 IM proteins. Finally, we compared protein levels between wild type cells and those over-synthesizing the membrane-embedded translocation channel SecYEG proteins. We propose that this proteomics pipeline will be generally applicable to the determination of IMP from other bacteria.


Assuntos
Proteínas de Escherichia coli/análise , Escherichia coli/química , Proteoma/análise , Cromatografia Líquida , Escherichia coli/citologia , Proteólise , Proteômica , Espectrometria de Massas em Tandem
8.
FASEB J ; 29(12): 4840-52, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26251180

RESUMO

The phosphatase and tensin homolog deleted on chromosome 10 (PTEN) tumor suppressor protein is regulated by various mechanisms that are not fully understood. This includes regulation by Tyr phosphorylation by a mechanism that remains elusive. Here, we show that focal adhesion kinase (FAK) phosphorylates PTEN in vitro, in cell-free systems and in cells. Furthermore, by mass spectrometry, we identified Tyr336 on PTEN as being phosphorylated by FAK. Tyr336 phosphorylation increased phosphatase activity, protein-lipid interaction, and protein stability of PTEN. In cells, including primary mouse macrophages and human cancer cell lines, FAK was found to be negatively regulated by p110δ phosphoinositide-3 kinase (PI3K), whereas the activation of FAK was positively regulated by RhoA-associated kinase (ROCK). Indeed, the phosphorylation of FAK was unexpectedly increased in macrophages derived from mice expressing kinase-dead p110δ. Pharmacologic inactivation of RhoA/ROCK reduced the phosphorylation of FAK to normal levels in cells with genetically inactivated p110δ. Likewise, pharmacologic inactivation of FAK reduced the phosphorylation of PTEN in cells expressing kinase-dead p110δ and restored the functional defects of p110δ inactivation, including Akt phosphorylation and cell proliferation. This work identifies FAK as a target of p110δ PI3K that links RhoA with PTEN and establishes for the first time that PTEN is a substrate of FAK-mediated Tyr phosphorylation.


Assuntos
Cromossomos Humanos Par 10 , Classe I de Fosfatidilinositol 3-Quinases/metabolismo , Proteína-Tirosina Quinases de Adesão Focal/metabolismo , Deleção de Genes , PTEN Fosfo-Hidrolase/metabolismo , Sequência de Aminoácidos , Linhagem Celular Tumoral , Proteína-Tirosina Quinases de Adesão Focal/antagonistas & inibidores , Humanos , Dados de Sequência Molecular , PTEN Fosfo-Hidrolase/química , PTEN Fosfo-Hidrolase/genética , Fosforilação
9.
Immunology ; 144(1): 158-69, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25053509

RESUMO

Soluble MHCII (sMHCII) molecules are present in body fluids of healthy individuals and are considered to be involved in the maintenance of self tolerance, and are also related to various diseases. Their concentration increases during in vivo antigen-specific tolerogenic stimulation and it was recently shown that exosome-mediated tolerance is MHCII dependent. At the cellular level, sMHCII proteins compete with membrane MHCII for T-cell receptor binding on CD4(+) T cells. Immunoaffinity purification techniques isolated sMHCII antigens from the serum of human serum albumin (HSA) -tolerant mice as a single highly glycosylated protein of ~ 60,000 molecular weight, specifically interacting with anti-class II antibodies in Western blotting and ELISA. Mass spectroscopy showed that these sMHCII proteins were loaded with the tolerogenic peptide as well as multiple self peptides. At the cellular level, sMHCII suppressed antigen-specific, and to a lesser degree antigen-non-specific, spleen cell proliferation and induced CD25 in naive T cells. In T cells activated by antigen-seeded macrophages, sMHCII decreased CD28 and increased CTLA-4 protein expression, while decreasing interleukin-2 and increasing interleukin-10 production. In this case, sMHCII proteins were shown to decrease ZAP-70 and LAT phosphorylation. The results presented here for the first time provide evidence for the role of sMHCII proteins in immune response suppression and maintenance of tolerance, revealing novel regulatory mechanisms for immune system manipulation.


Assuntos
Antígenos/farmacologia , Linfócitos T CD4-Positivos/imunologia , Antígenos de Histocompatibilidade Classe II/farmacologia , Tolerância Imunológica/efeitos dos fármacos , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/imunologia , Animais , Antígenos/genética , Antígenos/imunologia , Antígenos CD28/genética , Antígenos CD28/imunologia , Linfócitos T CD4-Positivos/citologia , Antígeno CTLA-4/genética , Antígeno CTLA-4/imunologia , Antígenos de Histocompatibilidade Classe II/genética , Antígenos de Histocompatibilidade Classe II/imunologia , Humanos , Tolerância Imunológica/genética , Interleucina-10/genética , Interleucina-10/imunologia , Subunidade alfa de Receptor de Interleucina-2/genética , Subunidade alfa de Receptor de Interleucina-2/imunologia , Proteínas de Membrana/genética , Proteínas de Membrana/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Fosfoproteínas/genética , Fosfoproteínas/imunologia , Receptores de Antígenos de Linfócitos T/genética , Receptores de Antígenos de Linfócitos T/imunologia , Solubilidade , Proteína-Tirosina Quinase ZAP-70/genética , Proteína-Tirosina Quinase ZAP-70/imunologia
11.
J Pept Sci ; 21(6): 476-9, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25781150

RESUMO

The synthetic peptide Z-Gly-Aib-Gly-Aib-OtBu was dissolved in methanol and crystallized in a mixture of ethyl acetate and petroleum ether. The crystals belong to the centrosymmetric space group P4/n that is observed less than 0.3% in the Cambridge Structural Database. The first Gly residue assumes a semi-extended conformation (φ ±62°, ψ ∓131°). The right-handed peptide folds in two consecutive ß-turns of type II' and type I or an incipient 310 -helix, and the left-handed counterpart folds accordingly in the opposite configuration. In the crystal lattice, one molecule is linked to four neighbors in the ab-plane via hydrogen bonds. These bonds form a continuous network of left- and right-handed molecules. The successive ab-planes stack via apolar contacts in the c-direction. An ethyl acetate molecule is situated on and close to the fourfold axis.


Assuntos
Modelos Moleculares , Peptídeos/química , Acetatos/química , Alcanos/química , Carvão Vegetal/química , Ligação de Hidrogênio , Metanol/química , Conformação Proteica
12.
Mol Cell Proteomics ; 12(3): 599-610, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23230279

RESUMO

Biological membranes are essential for cell viability. Their functional characteristics strongly depend on their protein content, which consists of transmembrane (integral) and peripherally associated membrane proteins. Both integral and peripheral inner membrane proteins mediate a plethora of biological processes. Whereas transmembrane proteins have characteristic hydrophobic stretches and can be predicted using bioinformatics approaches, peripheral inner membrane proteins are hydrophilic, exist in equilibria with soluble pools, and carry no discernible membrane targeting signals. We experimentally determined the cytoplasmic peripheral inner membrane proteome of the model organism Escherichia coli using a multidisciplinary approach. Initially, we extensively re-annotated the theoretical proteome regarding subcellular localization using literature searches, manual curation, and multi-combinatorial bioinformatics searches of the available databases. Next we used sequential biochemical fractionations coupled to direct identification of individual proteins and protein complexes using high resolution mass spectrometry. We determined that the proposed cytoplasmic peripheral inner membrane proteome occupies a previously unsuspected ∼19% of the basic E. coli BL21(DE3) proteome, and the detected peripheral inner membrane proteome occupies ∼25% of the estimated expressed proteome of this cell grown in LB medium to mid-log phase. This value might increase when fleeting interactions, not studied here, are taken into account. Several proteins previously regarded as exclusively cytoplasmic bind membranes avidly. Many of these proteins are organized in functional or/and structural oligomeric complexes that bind to the membrane with multiple interactions. Identified proteins cover the full spectrum of biological activities, and more than half of them are essential. Our data suggest that the cytoplasmic proteome displays remarkably dynamic and extensive communication with biological membrane surfaces that we are only beginning to decipher.


Assuntos
Membrana Celular/metabolismo , Proteínas de Escherichia coli/análise , Escherichia coli/metabolismo , Proteoma/análise , Proteômica/métodos , Cromatografia Líquida , Proteínas de Membrana/análise , Nanotecnologia/métodos , Espectrometria de Massas em Tandem
13.
EMBnet J ; 292024.
Artigo em Inglês | MEDLINE | ID: mdl-38845752

RESUMO

Breast milk, often referred to as "liquid gold," is a complex biofluid that provides essential nutrients, immune factors, and developmental cues for newborns. Recent advancements in the field of exosome research have shed light on the critical role of exosomes in breast milk. Exosomes are nanosized vesicles that carry bioactive molecules, including proteins, lipids, nucleic acids, and miRNAs. These tiny messengers play a vital role in intercellular communication and are now being recognized as key players in infant health and development. This paper explores the emerging field of milk exosomics, emphasizing the potential of exosome fingerprinting to uncover valuable insights into the composition and function of breast milk. By deciphering the exosomal cargo, we can gain a deeper understanding of how breast milk influences neonatal health and may even pave the way for personalized nutrition strategies.

14.
Diagnostics (Basel) ; 13(17)2023 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-37685286

RESUMO

Acute lymphoblastic leukemia (ALL) is the most common cancer in children and one of the success stories in cancer therapeutics. Risk-directed therapy based on clinical, biologic and genetic features has played a significant role in this accomplishment. Despite the observed improvement in survival rates, leukemia remains one of the leading causes of cancer-related deaths. Implementation of next-generation genomic and transcriptomic sequencing tools has illustrated the genomic landscape of ALL. However, the underlying dynamic changes at protein level still remain a challenge. Proteomics is a cutting-edge technology aimed at deciphering the mechanisms, pathways, and the degree to which the proteome impacts leukemia subtypes. Advances in mass spectrometry enable high-throughput collection of global proteomic profiles, representing an opportunity to unveil new biological markers and druggable targets. The purpose of this narrative review article is to provide a comprehensive overview of studies that have utilized applications of proteomics in an attempt to gain insight into the pathogenesis and identification of biomarkers in childhood ALL.

15.
Life (Basel) ; 13(1)2023 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-36676122

RESUMO

(1) Background: Compelling evidence shows that dietary patterns can slow the rate of cognitive decline, suggesting diet is a promising preventive measure against dementia. (2) Objective: This systematic review summarizes the evidence of three dietary patterns, the Mediterranean diet, the ketogenic diet and the MIND diet, for the prevention of cognitive decline. (3) Methods: A systematic search was conducted in major electronic databases (PubMed, ScienceDirect and Web of Science) up until 31 January 2022, using the key search terms "Mediterranean diet", "ketogenic diet", "MIND diet", "dementia", "cognition" and "aging". A statistical analysis was performed using RoB 2 and the Jadad scale to assess the risk of bias and methodological quality in randomized controlled trials. (4) Results: Only RCTs were included in this study; there were eleven studies (n = 2609 participants) of the Mediterranean diet, seven studies (n = 313) of the ketogenic diet and one study (n = 37) of the MIND diet. The participants' cognitive statuses were normal in seven studies, ten studies included patients with mild cognitive impairments and two studies included Alzheimer's disease patients. (5) Conclusion: All three dietary interventions have been shown to slow the rate of cognitive decline in the included studies. The Mediterranean diet was shown to be beneficial for global cognition after 10 weeks of adherence, the ketogenic diet had a beneficial effect for patients with diabetes mellitus and improved verbal recognition, while the MIND diet showed benefits in obese patients, improving working memory, verbal recognition, memory and attention.

16.
Res Vet Sci ; 162: 104959, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37480717

RESUMO

Canine degenerative myelopathy (CDM) is a late-onset fatal disorder associated with a point mutation of the superoxide dismutase 1 (SOD1) gene (c.118G > A). The purpose of this study was to determine the genotype and allele frequencies of this mutation in 108 dogs, mainly in Belgian Malinois and German Shepherd dogs with (CDM-affected group) and without CDM clinical symptoms (control group) in Greece. Genotyping of the c.118G > A mutation was possible by Sanger sequencing and PCR-RFLP. The observed genotype frequencies for the control group were 89.4% for the homozygous (G/G), 9.6% for the heterozygous (A/G), and 0.96% for the homozygous mutant (A/A) allele. The mutant allele was not common in the Belgian Malinois dogs (allele frequency = 0.029), but quite common in the German Shepherd dogs (allele frequency = 0.138). In the CDM affected group, all 4 dogs were homozygous for the mutant allele. These frequencies were close to those expected, indicating no significant departure from Hardy-Weinberg equilibrium. A strong but not statistically significant association between the mutant allele and CDM was observed. A previously identified deletion upstream of the mutation of interest was found at a high frequency (0.361) in the population.


Assuntos
Doenças do Cão , Doenças da Medula Espinal , Cães , Animais , Superóxido Dismutase-1/genética , Grécia/epidemiologia , Prevalência , Alelos , Doenças da Medula Espinal/epidemiologia , Doenças da Medula Espinal/genética , Doenças da Medula Espinal/veterinária , Doenças do Cão/epidemiologia , Doenças do Cão/genética
17.
Cancers (Basel) ; 15(15)2023 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-37568720

RESUMO

In most lymphomas, p53 signaling pathway is inactivated by various mechanisms independent to p53 gene mutations or deletions. In many cases, p53 function is largely regulated by alterations in the protein abundance levels by the action of E3 ubiquitin-protein ligase MDM2, targeting p53 to proteasome-mediated degradation. In the present study, an integrating transcriptomics and proteomics analysis was employed to investigate the effect of p53 activation by a small-molecule MDM2-antagonist, nutlin-3a, on three lymphoma cell models following p53 activation. Our analysis revealed a system-wide nutlin-3a-associated effect in all examined lymphoma types, identifying in total of 4037 differentially affected proteins involved in a plethora of pathways, with significant heterogeneity among lymphomas. Our findings include known p53-targets and novel p53 activation effects, involving transcription, translation, or degradation of protein components of pathways, such as a decrease in key members of PI3K/mTOR pathway, heat-shock response, and glycolysis, and an increase in key members of oxidative phoshosphorylation, autophagy and mitochondrial translation. Combined inhibition of HSP90 or PI3K/mTOR pathway with nutlin-3a-mediated p53-activation enhanced the apoptotic effects suggesting a promising strategy against human lymphomas. Integrated omic profiling after p53 activation offered novel insights on the regulatory role specific proteins and pathways may have in lymphomagenesis.

18.
Proteomics ; 12(3): 391-400, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22140069

RESUMO

Urine is a biological fluid that is non-invasively and easily harvested, and exhibits high stability from the proteomics point of view. At the downside, the overall low protein content of urine as well as the presence of low- and high-abundance proteins underscores the need for protein enrichment. As a continuation of previous efforts towards the comprehensive characterization of the urine proteome, the current study targeted the mining of urine proteins through the combined application of different protein separation methodologies, specifically, liquid chromatography and preparative electrophoresis along with 1D gel electrophoresis and protein identification by mass spectrometry. In order to enhance comparison and integration of different experimental data sets, the "standard" urine sample developed within the European Kidney and Urine Proteomics (EuroKUP) COST Action, was employed. As a contribution to the existing knowledge, we focused on maintaining and providing information about experimental mass of the identified proteins as well as information pertaining to their relative abundance--as allowed by technical limitations--thus providing an initial view of different isoforms representation and facilitating their future characterization. The difficulties in comparing proteome mining data sets become once more evident, underscoring the need for adopting standardized ways for data reporting as well as for potential new approaches for data analysis involving a thorough investigation of received information at the peptide level.


Assuntos
Isoformas de Proteínas/análise , Proteínas/análise , Proteômica/métodos , Urina/química , Cromatografia Líquida/métodos , Eletroforese em Gel Bidimensional/métodos , Humanos , Masculino , Peptídeos/análise , Peptídeos/química , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos
19.
BMC Microbiol ; 12: 272, 2012 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-23171228

RESUMO

BACKGROUND: The taxis signaling system of the extreme halophilic archaeon Halobacterium (Hbt.) salinarum differs in several aspects from its model bacterial counterparts Escherichia coli and Bacillus subtilis. We studied the protein interactions in the Hbt. salinarum taxis signaling system to gain an understanding of its structure, to gain knowledge about its known components and to search for new members. RESULTS: The interaction analysis revealed that the core signaling proteins are involved in different protein complexes and our data provide evidence for dynamic interchanges between them. Fifteen of the eighteen taxis receptors (halobacterial transducers, Htrs) can be assigned to four different groups depending on their interactions with the core signaling proteins. Only one of these groups, which contains six of the eight Htrs with known signals, shows the composition expected for signaling complexes (receptor, kinase CheA, adaptor CheW, response regulator CheY). From the two Hbt. salinarum CheW proteins, only CheW1 is engaged in signaling complexes with Htrs and CheA, whereas CheW2 interacts with Htrs but not with CheA. CheY connects the core signaling structure to a subnetwork consisting of the two CheF proteins (which build a link to the flagellar apparatus), CheD (the hub of the subnetwork), two CheC complexes and the receptor methylesterase CheB. CONCLUSIONS: Based on our findings, we propose two hypotheses. First, Hbt. salinarum might have the capability to dynamically adjust the impact of certain Htrs or Htr clusters depending on its current needs or environmental conditions. Secondly, we propose a hypothetical feedback loop from the response regulator to Htr methylation made from the CheC proteins, CheD and CheB, which might contribute to adaptation analogous to the CheC/CheD system of B. subtilis.


Assuntos
Quimiotaxia , Halobacterium/fisiologia , Mapas de Interação de Proteínas , Transdução de Sinais , Regulação da Expressão Gênica em Archaea , Halobacterium/genética , Mapeamento de Interação de Proteínas
20.
Materials (Basel) ; 15(2)2022 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-35057267

RESUMO

Raman spectroscopy is a well-defined spectroscopic technique sensitive to the molecular vibrations of materials, since it provides fingerprint-like information regarding the molecular structure of the analyzed samples. It has been extensively used for non-destructive and label-free cell characterization, particularly in the qualitative and quantitative estimation of amino acids, lipids, nucleic acids, and carbohydrates. Lymphoma cell classification is a crucial task for accurate and prompt lymphoma diagnosis, prognosis, and treatment. Currently, it is mostly based on limited information and requires costly and time-consuming approaches. In this work, we are proposing a fast characterization and differentiation methodology of lymphoma cell subtypes based on Raman spectroscopy. The study was performed in the temperature range of 15-37 °C to identify the best cell measurement conditions. The proposed methodology is fast, accurate, and requires minimal sample preparation, resulting in a potentially promising, non-invasive strategy for early and accurate cell lymphoma characterization.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA