Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 145(5): 645-7, 2011 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-21620131

RESUMO

The human malaria parasite Plasmodium falciparum increases red blood cell membrane permeability during infection to allow for import of nutrients and other solutes. Nguitragool et al. (2011) have now identified parasite-encoded CLAG3 proteins as key components of the import channel located on the erythrocyte membrane.

2.
J Biol Chem ; 294(6): 1924-1935, 2019 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-30541922

RESUMO

Infection with Plasmodium species parasites causes malaria. Plasmodium parasites are purine auxotrophic. They import purines via an equilibrative nucleoside transporter (ENT). In P. falciparum, the most virulent species, the equilibrative nucleoside transporter 1 (PfENT1) represents the primary purine uptake pathway. This transporter is a potential target for the development of antimalarial drugs. In the absence of a high-resolution structure for either PfENT1 or a homologous ENT, we used the substituted cysteine accessibility method (SCAM) to investigate the membrane-spanning domain structure of PfENT1 to identify potential inhibitor-binding sites. We previously used SCAM to identify water-accessible residues that line the permeation pathway in transmembrane segment 11 (TM11). TM2 and TM10 lie adjacent to TM11 in an ab initio model of a homologous Leishmania donovani nucleoside transporter. To identify TM2 and TM10 residues in PfENT1 that are at least transiently on the water-accessible transporter surface, we assayed the reactivity of single cysteine-substitution mutants with three methanethiosulfonate (MTS) derivatives. Cysteines substituted for 12 of 14 TM2 segment residues reacted with MTS-ethyl-ammonium-biotin (MTSEA-biotin). At eight positions, MTSEA-biotin inhibited transport, and at four positions substrate transport was potentiated. On an α helical wheel projection of TM2, the four positions where potentiation occurred were located in a cluster on one side of the helix. In contrast, although MTSEA-biotin inhibited 9 of 10 TM10 cysteine-substituted mutants, the reactive residues did not form a pattern consistent with either an α helix or ß sheet. These results may help identify the binding site(s) of PfENT1 inhibitors.


Assuntos
Substituição de Aminoácidos/genética , Permeabilidade da Membrana Celular/genética , Proteínas de Transporte de Nucleobases, Nucleosídeos, Nucleotídeos e Ácidos Nucleicos/antagonistas & inibidores , Proteínas de Transporte de Nucleobases, Nucleosídeos, Nucleotídeos e Ácidos Nucleicos/química , Proteínas de Protozoários/antagonistas & inibidores , Proteínas de Protozoários/química , Antimaláricos , Sítios de Ligação , Transporte Biológico , Cisteína , Desenho de Fármacos , Proteínas de Transporte de Nucleobases, Nucleosídeos, Nucleotídeos e Ácidos Nucleicos/genética , Plasmodium falciparum , Proteínas de Protozoários/genética , Purinas/metabolismo , Solubilidade , Água/química
3.
PLoS Pathog ; 12(7): e1005763, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27467575

RESUMO

A major cause of the paucity of new starting points for drug discovery is the lack of interaction between academia and industry. Much of the global resource in biology is present in universities, whereas the focus of medicinal chemistry is still largely within industry. Open source drug discovery, with sharing of information, is clearly a first step towards overcoming this gap. But the interface could especially be bridged through a scale-up of open sharing of physical compounds, which would accelerate the finding of new starting points for drug discovery. The Medicines for Malaria Venture Malaria Box is a collection of over 400 compounds representing families of structures identified in phenotypic screens of pharmaceutical and academic libraries against the Plasmodium falciparum malaria parasite. The set has now been distributed to almost 200 research groups globally in the last two years, with the only stipulation that information from the screens is deposited in the public domain. This paper reports for the first time on 236 screens that have been carried out against the Malaria Box and compares these results with 55 assays that were previously published, in a format that allows a meta-analysis of the combined dataset. The combined biochemical and cellular assays presented here suggest mechanisms of action for 135 (34%) of the compounds active in killing multiple life-cycle stages of the malaria parasite, including asexual blood, liver, gametocyte, gametes and insect ookinete stages. In addition, many compounds demonstrated activity against other pathogens, showing hits in assays with 16 protozoa, 7 helminths, 9 bacterial and mycobacterial species, the dengue fever mosquito vector, and the NCI60 human cancer cell line panel of 60 human tumor cell lines. Toxicological, pharmacokinetic and metabolic properties were collected on all the compounds, assisting in the selection of the most promising candidates for murine proof-of-concept experiments and medicinal chemistry programs. The data for all of these assays are presented and analyzed to show how outstanding leads for many indications can be selected. These results reveal the immense potential for translating the dispersed expertise in biological assays involving human pathogens into drug discovery starting points, by providing open access to new families of molecules, and emphasize how a small additional investment made to help acquire and distribute compounds, and sharing the data, can catalyze drug discovery for dozens of different indications. Another lesson is that when multiple screens from different groups are run on the same library, results can be integrated quickly to select the most valuable starting points for subsequent medicinal chemistry efforts.


Assuntos
Antimaláricos/uso terapêutico , Conjuntos de Dados como Assunto , Descoberta de Drogas/métodos , Malária/tratamento farmacológico , Doenças Negligenciadas/tratamento farmacológico , Avaliação Pré-Clínica de Medicamentos , Humanos , Bibliotecas de Moléculas Pequenas
5.
Mol Pharmacol ; 89(6): 678-85, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27048953

RESUMO

Malaria is a critical public health issue in the tropical world, causing extensive morbidity and mortality. Infection by unicellular, obligate intracellular Plasmodium parasites causes malaria. The emergence of resistance to current antimalarial drugs necessitates the development of novel therapeutics. A potential novel drug target is the purine import transporter. Because Plasmodium parasites are purine auxotrophic, they must import purines from their host to fulfill metabolic requirements. They import purines via equilibrative nucleoside transporter 1 (ENT1) homologs. Recently, we used a yeast-based high-throughput screen to identify inhibitors of the P. falciparum ENT1 (PfENT1) that kill P. falciparum parasites in culture. P. berghei infection of mice is an animal model for human malaria. Because P. berghei ENT1 (PbENT1) shares only 60% amino acid sequence identity with PfENT1, we sought to characterize PbENT1 and its sensitivity to our PfENT1 inhibitors. We expressed PbENT1 in purine auxotrophic yeast and used radiolabeled substrate uptake to characterize its function. We showed that PbENT1 transports both purines and pyrimidines. It preferred nucleosides compared with nucleobases. Inosine (IC50 = 3.7 µM) and guanosine (IC50 = 21.3 µM) had the highest affinities. Our recently discovered PfENT1 inhibitors were equally effective against both PbENT1- and PfENT1-mediated purine uptake. The PfENT1 inhibitors are at least 10-fold more potent against PfENT1 than human hENT1. They kill P. berghei parasites in 24-hour ex vivo culture. Thus, the P. berghei murine malaria model may be useful to evaluate the efficacy of PfENT1 inhibitors in vivo and their therapeutic potential for treatment of malaria.


Assuntos
Antimaláricos/farmacologia , Transportador Equilibrativo 1 de Nucleosídeo/metabolismo , Plasmodium berghei/metabolismo , Adenosina/metabolismo , Animais , Feminino , Humanos , Concentração Inibidora 50 , Camundongos , Saccharomyces cerevisiae/metabolismo , Especificidade por Substrato/efeitos dos fármacos , Fatores de Tempo , Trítio/metabolismo , Uridina/metabolismo
6.
Adv Exp Med Biol ; 869: 25-54, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26381939

RESUMO

Cysteine substitution has been a powerful tool to investigate the structure and function of proteins. It has been particularly useful for studies of membrane proteins in their native environment, embedded in phospholipid membranes. Among the 20 amino acids, cysteine is uniquely reactive. This reactivity has motivated the synthesis of a wide array of sulfhydryl reactive chemicals. The commercially available array of sulfhydryl reactive reagents has allowed investigators to probe the local steric and electrostatic environment around engineered cysteines and to position fluorescent, paramagnetic and mass probes at specific sites within proteins and for distance measurements between pairs of sites. Probing the reactivity and accessibility of engineered cysteines has been extensively used in Substituted Cysteine Accessibility Method (SCAM) investigations of ion channels, membrane transporters and receptors. These studies have successfully identified the residues lining ion channels, agonist/antagonist and allosteric modulator binding sites, and regions whose conformation changes as proteins transition between different functional states. The thousands of cysteine-substitution mutants reported in the literature demonstrate that, in general, mutation to cysteine is well tolerated. This has allowed systematic studies of residues in transmembrane segments and in other parts of membrane proteins. Finally, by inserting pairs of cysteines and assaying their ability to form disulfide bonds, changes in proximity and mobility relationships between specific positions within a protein can be inferred. Thus, cysteine mutagenesis has provided a wealth of data on the structure of membrane proteins in their functional environment. This data can complement the structural insights obtained from the burgeoning number of crystal structures of detergent solubilized membrane proteins whose functional state is often uncertain. This article will review the use of cysteine mutagenesis to probe structure-function relationships in ion channels focusing mainly on Cys-loop receptors.


Assuntos
Receptores de Canais Iônicos de Abertura Ativada por Ligante com Alça de Cisteína/metabolismo , Ativação do Canal Iônico , Animais , Sítios de Ligação , Cisteína , Receptores de Canais Iônicos de Abertura Ativada por Ligante com Alça de Cisteína/química , Receptores de Canais Iônicos de Abertura Ativada por Ligante com Alça de Cisteína/genética , Humanos , Transporte de Íons , Ligantes , Potenciais da Membrana , Modelos Químicos , Mutagênese Sítio-Dirigida , Mutação , Ligação Proteica , Conformação Proteica , Substâncias Redutoras/química , Eletricidade Estática , Relação Estrutura-Atividade
7.
J Biol Chem ; 288(31): 22576-83, 2013 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-23754276

RESUMO

A representative of a new class of potent antimalarials with an unknown mode of action was recently described. To identify the molecular target of this class of antimalarials, we employed a photo-reactive affinity capture method to find parasite proteins specifically interacting with the capture compound in living parasitized cells. The capture reagent retained the antimalarial properties of the parent molecule (ACT-213615) and accumulated within parasites. We identified several proteins interacting with the capture compound and established a functional interaction between ACT-213615 and PfMDR1. We surmise that PfMDR1 may play a role in the antimalarial activity of the piperazine-containing compound ACT-213615.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP/fisiologia , Antimaláricos/farmacologia , Plasmodium falciparum/fisiologia , Raios Ultravioleta , Animais
8.
JCI Insight ; 9(9)2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38716732

RESUMO

Previous studies on attrition from MD-PhD programs have shown that students who self-identify as Black are more likely to withdraw before graduating than Hispanic students and students not from groups underrepresented in medicine (non-UIM). Here, we analyzed data collected for the National MD-PhD Program Outcomes Study, a national effort to track the careers of over 10,000 individuals who have graduated from MD-PhD programs over the past 60 years. On average, Black trainees took slightly longer to graduate, were less likely to choose careers in academia, and were more likely to enter nonacademic clinical practice; although, none of these differences were large. Black graduates were also more likely to choose careers in surgery or internal medicine, or entirely forego residency, and less likely to choose pediatrics, pathology, or neurology. Among those in academia, average research effort rates self-reported by Black, Hispanic, and non-UIM alumni were indistinguishable, as were rates of obtaining research grants and mentored training awards. However, the proportion of Black and Hispanic alumni who reported having NIH research grants was lower than that of non-UIM alumni, and the NIH career development to research project grant (K-to-R) conversion rate was lower for Black alumni. We propose that the reasons for these differences reflect experiences before, during, and after training and, therefore, conclude with action items that address each of these stages.


Assuntos
Negro ou Afro-Americano , Escolha da Profissão , Hispânico ou Latino , Humanos , Hispânico ou Latino/estatística & dados numéricos , Negro ou Afro-Americano/estatística & dados numéricos , Masculino , Feminino , Estados Unidos , Pesquisa Biomédica/estatística & dados numéricos , Educação de Pós-Graduação/estatística & dados numéricos , Adulto
9.
JCI Insight ; 9(3)2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38329127

RESUMO

The 2014 NIH Physician-Scientist Workforce Working Group predicted a future shortage of physician-scientists. Subsequent studies have highlighted disparities in MD-PhD admissions based on race, income, and education. Our analysis of data from the Association of American Medical Colleges covering 2014-2021 (15,156 applicants and 6,840 acceptees) revealed that acceptance into US MD-PhD programs correlates with research experience, family income, and research publications. The number of research experiences associated with parental education and family income. Applicants were more likely to be accepted with a family income greater than $50,000 or with one or more publications or presentations. Applicants were less likely to be accepted if they had parents without a graduate degree, were Black/African American, were first-generation college students, or were reapplicants, irrespective of the number of research experiences, publications, or presentations. These findings underscore an admissions bias that favors candidates from affluent and highly educated families, while disadvantaging underrepresented minorities.


Assuntos
Pesquisa Biomédica , Educação Médica , Médicos , Humanos , Fatores Sociodemográficos , Pesquisa Biomédica/educação , Recursos Humanos
10.
J Biol Chem ; 287(33): 27762-70, 2012 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-22730325

RESUMO

GABA(A) receptors mediate fast inhibitory synaptic transmission. The transmembrane ion channel is lined by a ring of five α helices, M2 segments, one from each subunit. An outer ring of helices comprising the alternating M1, M3, and M4 segments from each subunit surrounds the inner ring and forms the interface with the lipid bilayer. The structural rearrangements that follow agonist binding and culminate in opening of the ion pore remain incompletely characterized. Propofol and other intravenous general anesthetics bind at the ßM3-αM1 subunit interface. We sought to determine whether this region undergoes conformational changes during GABA activation. We measured the reaction rate of p-chloromercuribenzenesulfonate (pCMBS) with cysteines substituted in the GABA(A) receptor α1M1 and ß2M3 segments. In the presence of GABA, the pCMBS reaction rate increased significantly in a cluster of residues in the extracellular third of the α1M1 segment facing the ß2M3 segment. Mutation of the ß2M2 segment 19' position, R269Q, altered the pCMBS reaction rate with several α1M1 Cys, some only in the resting state and others only in the GABA-activated state. Thus, ß2R269 is charged in both states. GABA activation induced disulfide bond formation between ß2R269C and α1I228C. The experiments demonstrate that α1M1 moves in relationship to ß2M2R269 during gating. Thus, channel gating does not involve rigid body movements of the entire transmembrane domain. Channel gating causes changes in the relative position of transmembrane segments both within a single subunit and relative to the neighboring subunits.


Assuntos
Ativação do Canal Iônico , Bicamadas Lipídicas/química , Receptores de GABA-A/química , Substituição de Aminoácidos , Anestésicos Intravenosos/química , Anestésicos Intravenosos/metabolismo , Animais , Bicamadas Lipídicas/metabolismo , Mutação de Sentido Incorreto , Propofol/química , Propofol/metabolismo , Estrutura Quaternária de Proteína , Estrutura Terciária de Proteína , Ratos , Receptores de GABA-A/genética , Receptores de GABA-A/metabolismo , Xenopus laevis
11.
Biochem J ; 446(2): 179-90, 2012 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-22670848

RESUMO

Malaria, caused by Plasmodia parasites, affects hundreds of millions of people. As purine auxotrophs, Plasmodia use transporters to import host purines for subsequent metabolism by the purine salvage pathway. Thus purine transporters are attractive drug targets. All sequenced Plasmodia genomes encode four ENTs (equilibrative nucleoside transporters). During the pathogenic intraerythrocytic stages, ENT1 is a major route of purine nucleoside/nucleobase transport. Another plasma membrane purine transporter exists because Plasmodium falciparum ENT1-knockout parasites survive at supraphysiological purine concentrations. The other three ENTs have not been characterized functionally. Codon-optimized Pf- (P. falciparum) and Pv- (Plasmodium vivax) ENT4 were expressed in Xenopus laevis oocytes and substrate transport was determined with radiolabelled substrates. ENT4 transported adenine and 2'-deoxyadenosine at the highest rate, with millimolar-range apparent affinity. ENT4-expressing oocytes did not accumulate hypoxanthine, a key purine salvage pathway substrate, or AMP. Micromolar concentrations of the plant hormone cytokinin compounds inhibited both PfENT4 and PvENT4. In contrast with PfENT1, ENT4 interacted with the immucillin compounds in the millimolar range and was inhibited by 10 µM dipyridamole. Thus ENT4 is a purine transporter with unique substrate and inhibitor specificity. Its role in parasite physiology remains uncertain, but is likely to be significant because of the strong conservation of ENT4 homologues in Plasmodia genomes.


Assuntos
Proteínas de Transporte de Nucleosídeo Equilibrativas/metabolismo , Plasmodium falciparum/metabolismo , Plasmodium vivax/metabolismo , Proteínas de Protozoários/metabolismo , Adenina/metabolismo , Animais , Transporte Biológico/efeitos dos fármacos , Citocininas/farmacologia , Desoxiadenosinas/metabolismo , Dipiridamol/farmacologia , Proteínas de Transporte de Nucleosídeo Equilibrativas/antagonistas & inibidores , Proteínas de Transporte de Nucleosídeo Equilibrativas/química , Proteínas de Transporte de Nucleosídeo Equilibrativas/genética , Cinética , Moduladores de Transporte de Membrana/farmacologia , Oócitos/efeitos dos fármacos , Oócitos/metabolismo , Inibidores de Fosfodiesterase/farmacologia , Reguladores de Crescimento de Plantas/farmacologia , Isoformas de Proteínas/antagonistas & inibidores , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Estrutura Secundária de Proteína , Proteínas de Protozoários/antagonistas & inibidores , Proteínas de Protozoários/química , Proteínas de Protozoários/genética , Proteínas Recombinantes/antagonistas & inibidores , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Especificidade por Substrato , Xenopus laevis
12.
PLoS One ; 18(12): e0293923, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38113238

RESUMO

Malaria remains a major public health threat for billions of people worldwide. Infection with obligate intracellular, unicellular parasites from the genus Plasmodium causes malaria. Plasmodium falciparum causes the deadliest form of human malaria. Plasmodium parasites are purine auxotrophic. They rely on purine import from the host red blood cell cytoplasm via equilibrative nucleoside transporters to supply substrates to the purine salvage pathway. We previously developed a high throughput screening assay to identify inhibitors of the P. falciparum Equilibrative Nucleoside Transporter Type 1 (PfENT1). Screening a small molecule library identified PfENT1 inhibitors that blocked proliferation of P. falciparum parasites in in vitro culture. The goal of the current work was to validate a high-resolution model of PfENT1 predicted by the AlphaFold protein structure prediction program. We superimposed the predicted PfENT1 structure on the human homologue structure, hENT1, and developed a structure-based sequence alignment. We mutated the residues in PfENT1 aligned with and flanking the residues in hENT1 that interact with the purine analog, nitrobenzylthioinosine (NBMPR). Mutation of the PfENT1 residues Q135, D287, and R291 that are predicted to form hydrogen bonds to purine nucleosides eliminated purine and pyrimidine transport function in various yeast-based growth and radiolabeled substrate uptake assays. Mutation of two flanking residues, W53 and S290, also resulted in inactive protein. Mutation of L50 that forms hydrophobic interactions with the purine nucleobase reduced transport function. Based on our results the AlphaFold predicted structure for PfENT1 may be useful in guiding medicinal chemistry efforts to improve the potency of our PfENT1 inhibitors.


Assuntos
Malária Falciparum , Malária , Proteínas de Transporte de Nucleobases, Nucleosídeos, Nucleotídeos e Ácidos Nucleicos , Parasitos , Animais , Humanos , Nucleosídeos de Purina/metabolismo , Parasitos/metabolismo , Proteínas de Transporte de Nucleobases, Nucleosídeos, Nucleotídeos e Ácidos Nucleicos/metabolismo , Malária Falciparum/parasitologia , Proteínas de Membrana Transportadoras/metabolismo , Saccharomyces cerevisiae/genética , Transportador Equilibrativo 1 de Nucleosídeo
13.
J Biol Chem ; 286(16): 14098-109, 2011 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-21362624

RESUMO

GLIC is a homopentameric proton-gated, prokaryotic homologue of the Cys loop receptor family of neurotransmitter-gated ion channels. Recently, crystal structures of GLIC hypothesized to represent an open channel state were published. To explore the channel structure in functional GLIC channels, we tested the ability of p-chloromercuribenzenesulfonate to react with 30 individual cysteine substitution mutants in and flanking the M2 channel-lining segment in the closed state (pH 7.5) and in a submaximally activated state (pH 5.0). Nine mutants did not tolerate cysteine substitution and were not functional. From positions 10' to 27', p-chloromercuribenzenesulfonate significantly modified the currents at pH 7.5 and 5.0 in all mutants except H234C (11'), I235C (12'), V241C (18'), T243C (20'), L245C (22'), and Y250C (27'), which were not functional, except for 12'. Currents for P246C (23') and K247C (24') were only significantly altered at pH 5.0. The reaction rates were all >1000 m(-1) s(-1). The reactive residues were more accessible in the activated than in the resting state. We infer that M2 is tightly associated with the adjacent transmembrane helices at the intracellular end but is more loosely packed from 10' to the extracellular end than the x-ray structures suggest. We infer that the charge selectivity filter is in the cytoplasmic half of the channel. We also show that below pH 5.0, GLIC desensitizes on a time scale of minutes and infer that the crystal structures may represent a desensitized state.


Assuntos
Cianobactérias/metabolismo , Cisteína/química , 4-Cloromercuriobenzenossulfonato/química , Cristalografia por Raios X/métodos , Concentração de Íons de Hidrogênio , Canais Iônicos/química , Canais Iônicos/farmacologia , Proteínas de Membrana/química , Mutação , Neurotransmissores/química , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Prótons , Receptores de GABA/química , Receptores Nicotínicos/química , Receptores 5-HT3 de Serotonina/química
14.
JCI Insight ; 7(6)2022 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-35315357

RESUMO

The average age when physician-scientists begin their career has been rising. Here, we focused on one contributor to this change: the increasingly common decision by candidates to postpone applying to MD-PhD programs until after college. This creates a time gap between college and medical school. Data were obtained from 3544 trainees in 73 programs, 72 program directors, and AAMC databases. From 2013 to 2020, the prevalence of gaps rose from 53% to 75%, with the time usually spent doing research. Gap prevalence for MD students also increased but not to the same extent and for different reasons. Differences by gender, underrepresented status, and program size were minimal. Most candidates who took a gap did so because they believed it would improve their chances of admission, but gaps were as common among those not accepted to MD-PhD programs as among those who were. Many program directors preferred candidates with gaps, believing without evidence that gaps reflects greater commitment. Although candidates with gaps were more likely to have a publication at the time of admission, gaps were not associated with a shorter time to degree nor have they been shown to improve outcomes. Together, these observations raise concerns that, by promoting gaps after college, current admissions practices have had unintended consequences without commensurate advantages.


Assuntos
Médicos , Educação de Pós-Graduação em Medicina , Humanos , Pesquisadores
15.
JCI Insight ; 7(6)2022 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-35315364

RESUMO

Postgraduate physician-scientist training programs (PSTPs) enhance the experiences of physician-scientist trainees following medical school graduation. PSTPs usually span residency and fellowship training, but this varies widely by institution. Applicant competitiveness for these programs would be enhanced, and unnecessary trainee anxiety relieved, by a clear understanding of what factors define a successful PSTP matriculant. Such information would also be invaluable to PSTP directors and would allow benchmarking of their admissions processes with peer programs. We conducted a survey of PSTP directors across the US to understand the importance they placed on components of PSTP applications. Of 41 survey respondents, most were from internal medicine and pediatrics residency programs. Of all components in the application, two elements were considered very important by a majority of PSTP directors: (a) having one or more first-author publications and (b) the thesis advisor's letter. Less weight was consistently placed on factors often considered more relevant for non-physician-scientist postgraduate applicants - such as US Medical Licensing Examination scores, awards, and leadership activities. The data presented here highlight important metrics for PSTP applicants and directors and suggest that indicators of scientific productivity and commitment to research outweigh traditional quantitative measures of medical school performance.


Assuntos
Internato e Residência , Médicos , Criança , Bolsas de Estudo , Humanos , Pesquisadores , Inquéritos e Questionários
16.
J Biol Chem ; 285(22): 17001-10, 2010 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-20335165

RESUMO

Purine transport is essential for malaria parasites to grow because they lack the enzymes necessary for de novo purine biosynthesis. The Plasmodium falciparum Equilibrative Nucleoside Transporter 1 (PfENT1) is a member of the equilibrative nucleoside transporter (ENT) gene family. PfENT1 is a primary purine transport pathway across the P. falciparum plasma membrane because PfENT1 knock-out parasites are not viable at physiologic extracellular purine concentrations. Topology predictions and experimental data indicate that ENT family members have eleven transmembrane (TM) segments although their tertiary structure is unknown. In the current work, we showed that a naturally occurring polymorphism, F394L, in TM11 affects transport substrate K(m). We investigated the structure and function of the TM11 segment using the substituted cysteine accessibility method. We showed that mutation to Cys of two highly conserved glycine residues in a GXXXG motif significantly reduces PfENT1 protein expression levels. We speculate that the conserved TM11 GXXXG glycines may be critical for folding and/or assembly. Small, cysteine-specific methanethiosulfonate (MTS) reagents reacted with four TM11 Cys substitution mutants, L393C, I397C, T400C, and Y403C. Larger MTS reagents do not react with the more cytoplasmic positions. Hypoxanthine, a transported substrate, protected L393C, I397C, and T400C from covalent modification by the MTS reagents. Plotted on an alpha-helical wheel, Leu-393, Ile-397, and Thr-400 lie on one face of the helix in a 60 degrees arc suggesting that TM11 is largely alpha helical. We infer that they line a water-accessible surface, possibly the purine permeation pathway. These results advance our understanding of the ENT structure.


Assuntos
Transportador Equilibrativo 1 de Nucleosídeo/metabolismo , Plasmodium falciparum/metabolismo , Sequência de Aminoácidos , Animais , Membrana Celular/metabolismo , Cisteína/química , Glicina/química , Hipoxantina/química , Cinética , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Polimorfismo Genético , Estrutura Terciária de Proteína , Purinas/química , Homologia de Sequência de Aminoácidos
18.
Acad Pathol ; 8: 23742895211015347, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34046523

RESUMO

In February of 2020, New York City was unprepared for the COVID-19 pandemic. Cases of SARS-CoV-2 infection appeared and spread rapidly. Hospitals had to repurpose staff and establish diagnostic testing for this new viral infection. In the background of the usual respiratory pathogen testing performed in the clinical laboratory, SARS-CoV-2 testing at the Montefiore Medical System grew exponentially, from none to hundreds per day within the first week of testing. The job of appropriately routing SARS-CoV-2 viral specimens became overwhelming. Additional staff was required to triage these specimens to multiple in-house testing platforms as well as external reference laboratories. Since medical school classes and many research laboratories shut down at the Albert Einstein College of Medicine and students were eager to help fight the pandemic, we seized the opportunity to engage and train senior MD-PhD students to assist in triaging specimens. This volunteer force enabled us to establish the "Pathology Command Center," staffed by these students as well as residents and furloughed dental associates. The Pathology Command Center staff were tasked with the accessioning and routing of specimens, answering questions from clinical teams, and updating ever evolving protocols developed in collaboration with a team of Infectious Disease clinicians. Many lessons were learned during this process, including how best to restructure an accessioning department and how to properly onboard students and repurpose staff while establishing safeguards for their well-being during these unprecedented times. In this article, we share some of our challenges, successes, and what we ultimately learned as an organization.

19.
J Neurosci ; 29(10): 3083-92, 2009 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-19279245

RESUMO

The molecular basis of general anesthetic interactions with GABA(A) receptors is uncertain. An accurate homology model would facilitate studies of anesthetic action. Construction of a GABA(A) model based on the 4 A resolution acetylcholine receptor structure is complicated by alignment uncertainty between the acetylcholine and GABA(A) receptor M3 and M4 transmembrane segments. Using disulfide crosslinking we previously established the orientation of M2 and M3 within a single GABA(A) subunit. The resultant model predicts that the betaM3 residue beta2M286, implicated in anesthetic binding, faces the adjacent alpha1-M1 segment and not into the beta2 subunit interior as some models have suggested. To assess the proximity of beta2M286 to the alpha1-M1 segment we expressed beta2M286C and gamma2 with 10 consecutive alpha1-M1 cysteine (Cys) mutants, alpha1I223C to alpha1L232C, in and flanking the extracellular end of alpha1-M1. In activated states, beta2M286C formed disulfide bonds with alpha1Y225C and alpha1Q229C based on electrophysiological assays and dimers on Western blots, but not with other alpha1-M1 mutants. beta2F289, one helical turn below beta2M286, formed disulfide bonds with alpha1I228C, alpha1Q229C and alpha1L232C in activated states. The intervening residues, beta2G287C and beta2C288, did not form disulfide bonds with alpha1-M1 Cys mutants. We conclude that the beta2-M3 residues beta2M286 and beta2F289 face the intersubunit interface in close proximity to alpha1-M1 and that channel gating induces a structural rearrangement in the transmembrane subunit interface that reduces the betaM3 to alphaM1 separation by approximately 7 A. This supports the hypothesis that some intravenous anesthetics bind in the betaM3-alphaM1 subunit interface consistent with azi-etomidate photoaffinity labeling.


Assuntos
Anestésicos Intravenosos/metabolismo , Modelos Moleculares , Conformação Proteica , Subunidades Proteicas/metabolismo , Receptores de GABA-A/metabolismo , Homologia de Sequência de Aminoácidos , Ácido gama-Aminobutírico/metabolismo , Animais , Sítios de Ligação/fisiologia , Feminino , Agonistas de Receptores de GABA-A , Conformação Proteica/efeitos dos fármacos , Estrutura Terciária de Proteína/efeitos dos fármacos , Estrutura Terciária de Proteína/fisiologia , Subunidades Proteicas/agonistas , Subunidades Proteicas/química , Ratos , Receptores de GABA-A/química , Xenopus laevis , Ácido gama-Aminobutírico/farmacologia
20.
ACS Infect Dis ; 6(2): 205-214, 2020 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-31876139

RESUMO

Plasmodium falciparum causes the most severe form of malaria and causes approximately 500 000 deaths per year. P. falciparum parasites resistant to current antimalarial treatments are spreading. Therefore, it is imperative to develop new antimalarial drugs. Malaria parasites are purine auxotrophic. They rely on purine import from the host erythrocyte via Equilibrative Nucleoside Transporters (ENTs). Recently, inhibitors of the P. falciparum ENT1 (PfENT1) that inhibit proliferation of malaria parasites in culture have been identified as promising starting points for antimalarial drug development. Genome sequencing of P. falciparum field isolates has identified nonsynonymous single nucleotide polymorphisms (SNPs) in the gene encoding PfENT1. Here we evaluate the impact of these PfENT1 SNPs on purine substrate affinity and inhibitor efficacy. We expressed each PfENT1-SNP in Saccharomyces cerevisiae. Using PfENT1-SNP-expressing yeast, we characterized the PfENT1 purine substrate affinity using radiolabeled substrate uptake inhibition experiments. Four of the 13 SNPs altered affinity for one or more purines by up to 7-fold. Three of the SNPs reduced the potency of a subset of the inhibitors by up to 7-fold. One SNP, Q284E, reduced the potency of all six inhibitor chemotypes. We tested drug efficacy in available parasite strains containing PfENT1 SNPs. While PfENT1-SNP-expressing yeast had decreased sensitivity to PfENT1 inhibitors, parasite strains containing SNPs showed similar or more potent inhibition of proliferation with all PfENT1 inhibitors. Thus, parasite strains bearing PfENT1 SNPs are not resistant to these PfENT1 inhibitors. This supports PfENT1 as a promising target for further development of novel antimalarial drugs.


Assuntos
Antimaláricos/farmacologia , Proteínas de Transporte de Nucleobases, Nucleosídeos, Nucleotídeos e Ácidos Nucleicos/antagonistas & inibidores , Proteínas de Transporte de Nucleobases, Nucleosídeos, Nucleotídeos e Ácidos Nucleicos/genética , Plasmodium falciparum/genética , Proteínas de Protozoários/antagonistas & inibidores , Proteínas de Protozoários/genética , Purinas/metabolismo , Transporte Biológico , Desenvolvimento de Medicamentos , Resistência a Medicamentos , Genoma de Protozoário , Concentração Inibidora 50 , Polimorfismo de Nucleotídeo Único , Saccharomyces cerevisiae/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA