Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Development ; 148(16)2021 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-34351412

RESUMO

The neuroblast timer genes hunchback, Krüppel, nubbin and castor are expressed in temporal sequence in neural stem cells, and in corresponding spatial sequence along the Drosophila blastoderm. As canonical gap genes, hunchback and Krüppel play a crucial role in insect segmentation, but the roles of nubbin and castor in this process remain ambiguous. We have investigated the expression and functions of nubbin and castor during segmentation in the beetle Tribolium. We show that Tc-hunchback, Tc-Krüppel, Tc-nubbin and Tc-castor are expressed sequentially in the segment addition zone, and that Tc-nubbin regulates segment identity redundantly with two previously described gap/gap-like genes, Tc-giant and Tc-knirps. Simultaneous knockdown of Tc-nubbin, Tc-giant and Tc-knirps results in the formation of ectopic legs on abdominal segments. This homeotic transformation is caused by loss of abdominal Hox gene expression, likely due to expanded Tc-Krüppel expression. Our findings support the theory that the neuroblast timer series was co-opted for use in insect segment patterning, and contribute to our growing understanding of the evolution and function of the gap gene network outside of Drosophila.


Assuntos
Padronização Corporal/genética , Genes Homeobox , Proteínas de Homeodomínio/genética , Proteínas de Insetos/genética , Células-Tronco Neurais/metabolismo , Fatores do Domínio POU/genética , Tribolium/embriologia , Tribolium/genética , Animais , Blastoderma/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Drosophila/genética , Drosophila/crescimento & desenvolvimento , Desenvolvimento Embrionário/genética , Feminino , Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Redes Reguladoras de Genes , Proteínas de Homeodomínio/metabolismo , Proteínas de Insetos/metabolismo , Masculino , Fatores do Domínio POU/metabolismo , Interferência de RNA , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo
2.
Development ; 146(18)2019 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-31554626

RESUMO

There is now compelling evidence that many arthropods pattern their segments using a clock-and-wavefront mechanism, analogous to that operating during vertebrate somitogenesis. In this Review, we discuss how the arthropod segmentation clock generates a repeating sequence of pair-rule gene expression, and how this is converted into a segment-polarity pattern by 'timing factor' wavefronts associated with axial extension. We argue that the gene regulatory network that patterns segments may be relatively conserved, although the timing of segmentation varies widely, and double-segment periodicity appears to have evolved at least twice. Finally, we describe how the repeated evolution of a simultaneous (Drosophila-like) mode of segmentation within holometabolan insects can be explained by heterochronic shifts in timing factor expression plus extensive pre-patterning of the pair-rule genes.


Assuntos
Artrópodes/embriologia , Padronização Corporal , Animais , Evolução Biológica , Padronização Corporal/genética , Transdução de Sinais
3.
Proc Biol Sci ; 284(1869)2017 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-29237851

RESUMO

Arthropods comprise the majority of all described animal species, and understanding their evolution is a central question in biology. Their developmental processes are under the precise control of distinct hormonal regulators, including the sesquiterpenoids juvenile hormone (JH) and methyl farnesoate. The control of the synthesis and mode of action of these hormones played important roles in the evolution of arthropods and their adaptation to diverse habitats. However, the precise roles of non-coding RNAs, such as microRNAs (miRNAs), controlling arthropod hormonal pathways are unknown. Here, we investigated the miRNA regulation of the expression of the juvenile hormone acid methyltransferase gene (JHAMT), which encodes a rate-determining sesquiterpenoid biosynthetic enzyme. Loss of function of the miRNA bantam in the fly Drosophila melanogaster increased JHAMT expression, while overexpression of the bantam repressed JHAMT expression and resulted in pupal lethality. The male genital organs of the pupae were malformed, and exogenous sesquiterpenoid application partially rescued the genital deformities. The role of the bantam in the regulation of sesquiterpenoid biosynthesis was validated by transcriptomic, qPCR and hormone titre (JHB3 and JH III) analyses. In addition, we found a conserved set of miRNAs that interacted with JHAMT, and the sesquiterpenoid receptor methoprene-tolerant (Met) in different arthropod lineages, including insects (fly, mosquito and beetle), crustaceans (water flea and shrimp), myriapod (centipede) and chelicerate (horseshoe crab). This suggests that these miRNAs might have conserved roles in the post-transcriptional regulation of genes in sesquiterpenoid pathways across the Panarthropoda. Some of the identified lineage-specific miRNAs are potential targets for the development of new strategies in aquaculture and agricultural pest control.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Metiltransferases/genética , Transdução de Sinais/genética , Animais , Artrópodes/genética , Artrópodes/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Metiltransferases/metabolismo , MicroRNAs
4.
Development ; 140(15): 3210-20, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23861059

RESUMO

Studies on new arthropod models such as the beetle Tribolium castaneum are shifting our knowledge of embryonic patterning and morphogenesis beyond the Drosophila paradigm. In contrast to Drosophila, Tribolium embryos exhibit the short-germ type of development and become enveloped by extensive extra-embryonic membranes, the amnion and serosa. The genetic basis of these processes has been the focus of active research. Here, we complement genetic approaches with live fluorescence imaging of Tribolium embryos to make the link between gene function and morphogenetic cell behaviors during blastoderm formation and differentiation, germband condensation and elongation, and extra-embryonic development. We first show that transient labeling methods result in strong, homogeneous and persistent expression of fluorescent markers in Tribolium embryos, labeling the chromatin, membrane, cytoskeleton or combinations thereof. We then use co-injection of fluorescent markers with dsRNA for live imaging of embryos with disrupted caudal gene function caused by RNA interference. Using these approaches, we describe and compare cell and tissue dynamics in Tribolium embryos with wild-type and altered fate maps. We find that Tribolium germband condensation is effected by cell contraction and intercalation, with the latter being dependent on the anterior-posterior patterning system. We propose that germband condensation drives initiation of amnion folding, whereas expansion of the amniotic fold and closure of the amniotic cavity are likely driven by contraction of an actomyosin cable at the boundary between the amnion and serosa. Our methodology provides a comprehensive framework for testing quantitative models of patterning, growth and morphogenetic mechanisms in Tribolium and other arthropod species.


Assuntos
Tribolium/embriologia , Âmnio/embriologia , Animais , Animais Geneticamente Modificados , Blastoderma/citologia , Blastoderma/embriologia , Padronização Corporal/genética , Padronização Corporal/fisiologia , Corantes Fluorescentes/administração & dosagem , Técnicas de Silenciamento de Genes , Genes de Insetos , Proteínas Luminescentes/administração & dosagem , Microinjeções , Modelos Biológicos , RNA Mensageiro/administração & dosagem , RNA Mensageiro/genética , Tribolium/citologia , Tribolium/genética , Saco Vitelino/embriologia
5.
Dev Biol ; 396(1): 136-49, 2014 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-25263198

RESUMO

The apical plate of primary marine larvae is characterized by a common set of transcription factors comprising six3, rx, hbn, nk2.1 and FoxQ2. It harbours the apical organ, a neural and ciliary structure with neurosecretory properties. Recent studies in lophotrochozoans have found that apical organ cells form the anterior tip of the developing central nervous system. We identify an anterior medial tissue in the embryonic centipede head that shares the transcriptional profile of the apical plate of marine larvae, including nested domains of FoxQ2 and six3 expression. This domain gives rise to an anterior medial population of neural precursors distinct from those arising within the segmental neuroectoderm. These medial cells do not express achaete scute homologue in proneural clusters, but express collier, a marker for post mitotic cells committed to a neural fate, while they are still situated in the surface ectodermal layer. They then sink under the surface to form a compact cell cluster. Once internalized these cells extend axons that pioneer the primary axonal scaffold of the central nervous system. The same cells express phc2, a neural specific prohormone convertase, which suggests that they form an early active neurosecretory centre. Some also express markers of hypothalamic neurons, including otp, vtn and vax1. These medial neurosecretory cells of the centipede are distinct from those of the pars intercerebralis, the anterior neurosecretory part of the insect brain. The pars intercerebralis derives from vsx positive placodal-like invagination sites. In the centipede, vsx expressing invaginating ectoderm is situated bilaterally adjacent to the medial pioneer cell population. Hence the pars intercerebralis is present in both insect and centipede brains, whereas no prominent anterior medial cluster of pioneer neurons is present in insects. These observations suggest that the arthropod brain retained ancestrally an anterior medial population of neurosecretory cells homologous to those of the apical plate in other invertebrate phyla, but that this cell population has been lost or greatly reduced in insects.


Assuntos
Artrópodes/embriologia , Sistema Nervoso Central/embriologia , Regulação da Expressão Gênica no Desenvolvimento , Animais , Axônios/fisiologia , Blastoderma/fisiologia , Encéfalo/embriologia , Diferenciação Celular , Linhagem da Célula , Proteínas do Olho/fisiologia , Proteínas de Homeodomínio/fisiologia , Hipotálamo/embriologia , Larva/fisiologia , Proteínas do Tecido Nervoso/fisiologia , Neurônios/citologia , Neurônios/fisiologia , Fatores de Tempo , Transcrição Gênica , Proteína Homeobox SIX3
6.
Dev Biol ; 392(2): 419-30, 2014 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-24930702

RESUMO

We provide the first systematic description of germ cell development with molecular markers in a myriapod, the centipede Strigamia maritima. By examining the expression of Strigamia vasa and nanos orthologues, we find that the primordial germ cells are specified from at least the blastoderm stage. This is a much earlier embryonic stage than previously described for centipedes, or any other member of the Myriapoda. Using these genes as markers, and taking advantage of the developmental synchrony of Strigamia embryos within single clutches, we are able to track the development of the germ cells throughout embryogenesis. We find that the germ cells accumulate at the blastopore; that the cells do not internalize through the hindgut, but rather through the closing blastopore; and that the cells undergo a long-range migration to the embryonic gonad. This is the first evidence for primordial germ cells displaying these behaviours in any myriapod. The myriapods are a phylogenetically important group in the arthropod radiation for which relatively little developmental data is currently available. Our study provides valuable comparative data that complements the growing number of studies in insects, crustaceans and chelicerates, and is important for the correct reconstruction of ancestral states and a fuller understanding of how germ cell development has evolved in different arthropod lineages.


Assuntos
Artrópodes/embriologia , Diferenciação Celular/fisiologia , Movimento Celular/fisiologia , Células Germinativas/fisiologia , Animais , Artrópodes/citologia , Biomarcadores/metabolismo , Blastoderma/citologia , Blastoderma/fisiologia , Primers do DNA/genética , Embrião não Mamífero , Perfilação da Expressão Gênica , Células Germinativas/metabolismo , Hibridização In Situ , Anotação de Sequência Molecular , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Escócia , Especificidade da Espécie , Transcriptoma/genética
7.
Dev Biol ; 382(1): 235-45, 2013 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-23810931

RESUMO

Comparative studies have examined the expression and function of homologues of the Drosophila melanogaster pair rule and segment polarity genes in a range of arthropods. The segment polarity gene homologues have a conserved role in the specification of the parasegment boundary, but the degree of conservation of the upstream patterning genes has proved more variable. Using genomic resources we identify a complete set of pair rule gene homologues from the centipede Strigamia maritima, and document a detailed time series of expression during trunk segmentation. We find supportive evidence for a conserved hierarchical organisation of the pair rule genes, with a division into early- and late-activated genes which parallels the functional division into primary and secondary pair rule genes described in insects. We confirm that the relative expression of sloppy-paired and paired with respect to wingless and engrailed at the parasegment boundary is conserved between myriapods and insects; suggesting that functional interactions between these genes might be an ancient feature of arthropod segment patterning. However, we find that the relative expression of a number of the primary pair rule genes is divergent between myriapods and insects. This corroborates suggestions that the evolution of upper tiers in the segmentation gene network is more flexible. Finally, we find that the expression of the Strigamia pair rule genes in periodic patterns is restricted to the ectoderm. This suggests that any direct role of these genes in segmentation is restricted to this germ layer, and that mesoderm segmentation is either dependent on the ectoderm, or occurs through an independent mechanism.


Assuntos
Anelídeos/embriologia , Anelídeos/genética , Evolução Molecular , Redes Reguladoras de Genes , Animais , Padronização Corporal/genética , Sequência Conservada , Ectoderma/embriologia , Ectoderma/metabolismo , Embrião não Mamífero/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Genes , Homologia de Sequência do Ácido Nucleico , Fatores de Tempo
8.
Dev Biol ; 377(1): 305-17, 2013 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-23333944

RESUMO

Developmental processes are robust, or canalised: dynamic patterns of gene expression across space and time are regulated reliably and precisely in the presence of genetic and environmental perturbations. It remains unclear whether canalisation relies on specific regulatory factors (such as heat-shock proteins), or whether it is based on more general redundancy and distributed robustness at the network level. The latter explanation implies that mutations in many regulatory factors should exhibit loss of canalisation. Here, we present a quantitative characterisation of segmentation gene expression patterns in mutants of the terminal gap gene tailless (tll) in Drosophila melanogaster. Our analysis provides new insights into the dynamic mechanisms underlying gap gene regulation, and reveals significantly increased variability of gene expression in the mutant compared to the wild-type background. We show that both position and timing of posterior segmentation gene expression domains vary strongly from embryo-to-embryo in tll mutants. This variability must be caused by a vulnerability in the regulatory system which is hidden or buffered in the wild-type, but becomes uncovered by the deletion of tll. Our analysis provides evidence that loss of canalisation in mutants could be more widespread than previously thought.


Assuntos
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/embriologia , Drosophila melanogaster/genética , Embrião não Mamífero/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Proteínas Repressoras/metabolismo , Animais , Blastoderma/citologia , Blastoderma/metabolismo , Padronização Corporal/genética , Proteínas de Drosophila/deficiência , Proteínas de Drosophila/genética , Embrião não Mamífero/citologia , Redes Reguladoras de Genes/genética , Genes de Insetos/genética , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Mutação/genética , Proteínas Repressoras/deficiência , Proteínas Repressoras/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
9.
Development ; 138(22): 5015-26, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22028033

RESUMO

Arthropods and vertebrates display a segmental body organisation along all or part of the anterior-posterior axis. Whether this reflects a shared, ancestral developmental genetic mechanism for segmentation is uncertain. In vertebrates, segments are formed sequentially by a segmentation 'clock' of oscillating gene expression involving Notch pathway components. Recent studies in spiders and basal insects have suggested that segmentation in these arthropods also involves Notch-based signalling. These observations have been interpreted as evidence for a shared, ancestral gene network for insect, arthropod and bilaterian segmentation. However, because this pathway can play multiple roles in development, elucidating the specific requirements for Notch signalling is important for understanding the ancestry of segmentation. Here we show that Delta, a ligand of the Notch pathway, is not required for segment formation in the cricket Gryllus bimaculatus, which retains ancestral characteristics of arthropod embryogenesis. Segment patterning genes are expressed before Delta in abdominal segments, and Delta expression does not oscillate in the pre-segmental region or in formed segments. Instead, Delta is required for neuroectoderm and mesectoderm formation; embryos missing these tissues are developmentally delayed and show defects in segment morphology but normal segment number. Thus, what initially appear to be 'segmentation phenotypes' can in fact be due to developmental delays and cell specification errors. Our data do not support an essential or ancestral role of Notch signalling in segment generation across the arthropods, and show that the pleiotropy of the Notch pathway can confound speculation on possible segmentation mechanisms in the last common bilaterian ancestor.


Assuntos
Fase de Clivagem do Zigoto , Gryllidae/embriologia , Peptídeos e Proteínas de Sinalização Intracelular/fisiologia , Proteínas de Membrana/fisiologia , Receptores Notch/fisiologia , Abdome/embriologia , Animais , Animais Geneticamente Modificados , Relógios Biológicos/genética , Relógios Biológicos/fisiologia , Padronização Corporal/genética , Fase de Clivagem do Zigoto/metabolismo , Fase de Clivagem do Zigoto/fisiologia , Clonagem Molecular , Embrião não Mamífero , Regulação da Expressão Gênica no Desenvolvimento , Técnicas de Silenciamento de Genes , Gryllidae/genética , Gryllidae/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Modelos Biológicos , Filogenia , Receptores Notch/genética , Receptores Notch/metabolismo , Fatores de Tempo
10.
Development ; 138(1): 107-16, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21115609

RESUMO

Although most metazoan genes undergo alternative splicing, the functional relevance of the majority of alternative splicing products is still unknown. Here we explore this problem in the Drosophila Hox gene Ultrabithorax (Ubx). Ubx produces a family of six protein isoforms through alternative splicing. To investigate the functional specificity of the Ubx isoforms, we studied their role during the formation of the Drosophila halteres, small dorsal appendages that are essential for normal flight. Our work shows that isoform Ia, which is encoded by all Ubx exons, is more efficient than isoform IVa, which lacks the amino acids coded by two small exons, in controlling haltere development and regulating Ubx downstream targets. However, our experiments also demonstrate that the functional differences among the Ubx isoforms can be compensated for by increasing the expression levels of the less efficient form. The analysis of the DNA-binding profiles of Ubx isoforms to a natural Ubx target, spalt, shows no major differences in isoform DNA-binding activities, suggesting that alternative splicing might primarily affect the regulatory capacity of the isoforms rather than their DNA-binding patterns. Our results suggest that to obtain distinct functional outputs during normal development genes must integrate the generation of qualitative differences by alternative splicing to quantitative processes affecting isoform protein expression levels.


Assuntos
Proteínas de Drosophila/metabolismo , Proteínas de Homeodomínio/metabolismo , RNA/metabolismo , Fatores de Transcrição/metabolismo , Processamento Alternativo/genética , Processamento Alternativo/fisiologia , Animais , Western Blotting , Drosophila , Proteínas de Drosophila/genética , Regulação da Expressão Gênica no Desenvolvimento/genética , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Proteínas de Homeodomínio/genética , Fenótipo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , RNA/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fatores de Transcrição/genética
11.
Proc Natl Acad Sci U S A ; 108(7): 2855-60, 2011 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-21282633

RESUMO

Hox genes encode highly conserved transcription factors that regionalize the animal body axis by controlling complex developmental processes. Although they are known to operate in multiple cell types and at different stages, we are still missing the batteries of genes targeted by any one Hox gene over the course of a single developmental process to achieve a particular cell and organ morphology. The transformation of wings into halteres by the Hox gene Ultrabithorax (Ubx) in Drosophila melanogaster presents an excellent model system to study the Hox control of transcriptional networks during successive stages of appendage morphogenesis and cell differentiation. We have used an inducible misexpression system to switch on Ubx in the wing epithelium at successive stages during metamorphosis--in the larva, prepupa, and pupa. We have then used extensive microarray expression profiling and quantitative RT-PCR to identify the primary transcriptional responses to Ubx. We find that Ubx targets range from regulatory genes like transcription factors and signaling components to terminal differentiation genes affecting a broad repertoire of cell behaviors and metabolic reactions. Ubx up- and down-regulates hundreds of downstream genes at each stage, mostly in a subtle manner. Strikingly, our analysis reveals that Ubx target genes are largely distinct at different stages of appendage morphogenesis, suggesting extensive interactions between Hox genes and hormone-controlled regulatory networks to orchestrate complex genetic programs during metamorphosis.


Assuntos
Proteínas de Drosophila/metabolismo , Drosophila/crescimento & desenvolvimento , Drosophila/genética , Regulação da Expressão Gênica no Desenvolvimento/genética , Redes Reguladoras de Genes/genética , Proteínas de Homeodomínio/metabolismo , Morfogênese , Fatores de Transcrição/metabolismo , Asas de Animais/crescimento & desenvolvimento , Animais , Análise por Conglomerados , Proteínas de Drosophila/genética , Imunofluorescência , Proteínas de Homeodomínio/genética , Hibridização In Situ , Estágios do Ciclo de Vida/genética , Análise em Microsséries , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fatores de Transcrição/genética , Asas de Animais/metabolismo
12.
BMC Biol ; 11: 112, 2013 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-24289308

RESUMO

BACKGROUND: Most segmented animals add segments sequentially as the animal grows. In vertebrates, segment patterning depends on oscillations of gene expression coordinated as travelling waves in the posterior, unsegmented mesoderm. Recently, waves of segmentation gene expression have been clearly documented in insects. However, it remains unclear whether cyclic gene activity is widespread across arthropods, and possibly ancestral among segmented animals. Previous studies have suggested that a segmentation oscillator may exist in Strigamia, an arthropod only distantly related to insects, but further evidence is needed to document this. RESULTS: Using the genes even skipped and Delta as representative of genes involved in segment patterning in insects and in vertebrates, respectively, we have carried out a detailed analysis of the spatio-temporal dynamics of gene expression throughout the process of segment patterning in Strigamia. We show that a segmentation clock is involved in segment formation: most segments are generated by cycles of dynamic gene activity that generate a pattern of double segment periodicity, which is only later resolved to the definitive single segment pattern. However, not all segments are generated by this process. The most posterior segments are added individually from a localized sub-terminal area of the embryo, without prior pair-rule patterning. CONCLUSIONS: Our data suggest that dynamic patterning of gene expression may be widespread among the arthropods, but that a single network of segmentation genes can generate either oscillatory behavior at pair-rule periodicity or direct single segment patterning, at different stages of embryogenesis.


Assuntos
Artrópodes/embriologia , Artrópodes/genética , Padronização Corporal/genética , Regulação da Expressão Gênica no Desenvolvimento , Animais , Proteínas de Artrópodes/genética , Relógios Biológicos/genética , DNA Complementar/genética , DNA Complementar/metabolismo , Desenvolvimento Embrionário/genética , Éxons , Feminino , Proteínas de Homeodomínio/genética , Hibridização In Situ , Peptídeos e Proteínas de Sinalização Intracelular/genética , Masculino , Proteínas de Membrana/genética , Transdução de Sinais
13.
Dev Biol ; 363(1): 290-307, 2012 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-22138381

RESUMO

The geophilomorph centipede Strigamia maritima is an emerging model for studies of development and evolution among the myriapods. A draft genome sequence has recently been completed, making it also an important reference for comparative genomics, and for studies of myriapod physiology more generally. Here we present the first detailed description of myriapod development using modern techniques. We describe a timeline for embryonic development, with a detailed staging system based on photographs of live eggs and fixed embryos. We show that the early, cleavage and nuclear migration, stages of development are remarkably prolonged, accounting for nearly half of the total developmental period (approx 22 of 48 days at 13 °C). Towards the end of this period, cleavage cells migrate to the egg periphery to generate a uniform blastoderm. Asymmetry quickly becomes apparent as cells in the anterior half of the egg condense ventrally to form the presumptive head. Five anterior segments, the mandibular to the first leg-bearing segment (1st LBS) become clearly visible through the chorion almost simultaneously. Then, after a short pause, the next 35 leg-bearing segments appear at a uniform rate of 1 segment every 3.2 h (at 13 °C). Segment addition then slows to a halt with 40-45 LBS, shortly before the dramatic movements of germ band flexure, when the left and right halves of the embryo separate and the embryo folds deeply into the yolk. After flexure, segment morphogenesis and organogenesis proceed for a further 10 days, before the egg hatches. The last few leg-bearing segments are added during this period, much more slowly, at a rate of 1-2 segments/day. The last leg-bearing segment is fully defined only after apolysis of the embryonic cuticle, so that at hatching the embryo displays the final adult number of leg-bearing segments (typically 47-49 in our population).


Assuntos
Artrópodes/citologia , Artrópodes/embriologia , Embrião não Mamífero/citologia , Embrião não Mamífero/embriologia , Animais , Blastoderma/citologia , Blastoderma/embriologia , Padronização Corporal , Divisão Celular , Movimento Celular , Feminino , Gástrula/citologia , Gástrula/embriologia , Masculino , Microscopia de Vídeo , Modelos Biológicos , Fatores de Tempo , Imagem com Lapso de Tempo
14.
Proc Biol Sci ; 280(1756): 20122543, 2013 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-23407828

RESUMO

Biosilicification is widespread across the eukaryotes and requires concentration of silicon in intracellular vesicles. Knowledge of the molecular mechanisms underlying this process remains limited, with unrelated silicon-transporting proteins found in the eukaryotic clades previously studied. Here, we report the identification of silicon transporter (SIT)-type genes from the siliceous loricate choanoflagellates Stephanoeca diplocostata and Diaphanoeca grandis. Until now, the SIT gene family has been identified only in diatoms and other siliceous stramenopiles, which are distantly related to choanoflagellates among the eukaryotes. This is the first evidence of similarity between SITs from different eukaryotic supergroups. Phylogenetic analysis indicates that choanoflagellate and stramenopile SITs form distinct monophyletic groups. The absence of putative SIT genes in any other eukaryotic groups, including non-siliceous choanoflagellates, leads us to propose that SIT genes underwent a lateral gene transfer event between stramenopiles and loricate choanoflagellates. We suggest that the incorporation of a foreign SIT gene into the stramenopile or choanoflagellate genome resulted in a major metabolic change: the acquisition of biomineralized silica structures. This hypothesis implies that biosilicification has evolved multiple times independently in the eukaryotes, and paves the way for a better understanding of the biochemical basis of silicon transport through identification of conserved sequence motifs.


Assuntos
Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Coanoflagelados/metabolismo , Silício/metabolismo , Sequência de Aminoácidos , Transporte Biológico/genética , Coanoflagelados/genética , Sequência Conservada , Diatomáceas/metabolismo , Evolução Molecular , Transferência Genética Horizontal , Dados de Sequência Molecular , Filogenia , Homologia de Sequência de Aminoácidos
15.
Proc Natl Acad Sci U S A ; 106(33): 13897-902, 2009 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-19666530

RESUMO

Changes in the expression of Hox genes have been widely linked to the evolution of animal body plans, but functional demonstrations of this relationship have been impeded by the lack of suitable model organisms. A classic case study involves the repeated evolution of specialized feeding appendages, called maxillipeds, from anterior thoracic legs, in many crustacean lineages. These leg-to-maxilliped transformations correlate with the loss of Ultrabithorax (Ubx) expression from corresponding segments, which is proposed to be the underlying genetic cause. To functionally test this hypothesis, we establish tools for conditional misexpression and use these to misexpress Ubx in the crustacean Parhyale hawaiensis. Ectopic Ubx leads to homeotic transformations of anterior appendages toward more posterior thoracic fates, including maxilliped-to-leg transformations, confirming the capacity of Ubx to control thoracic (leg) versus gnathal (feeding) segmental identities. We find that maxillipeds not only are specified in the absence of Ubx, but also can develop in the presence of low/transient Ubx expression. Our findings suggest a path for the gradual evolutionary transition from thoracic legs to maxillipeds, in which stepwise changes in Hox gene expression have brought about this striking morphological and functional transformation.


Assuntos
Regulação da Expressão Gênica , Genes Homeobox , Proteínas de Homeodomínio/metabolismo , Animais , Animais Geneticamente Modificados , Clonagem Molecular , Crustáceos , Regulação para Baixo , Extremidades , Proteínas de Choque Térmico/metabolismo , Imuno-Histoquímica/métodos , Microscopia Eletrônica de Varredura , Modelos Genéticos , Fenótipo , Transgenes
16.
Dev Biol ; 344(1): 306-18, 2010 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-20433825

RESUMO

The segmentation gene hierarchy of Drosophila melanogaster represents one of the best understood of the gene networks that generate pattern during embryogenesis. Some components of this network are ancient, while other parts of the network have evolved within the higher Diptera. To further understand the evolution of this gene network, we are studying the role of gap genes in a representative of a basally diverging dipteran lineage, the moth midge Clogmia albipunctata. We have isolated orthologues of all of the Drosophila trunk gap genes from Clogmia, and determined their domains of expression during the blastoderm stage of development, in relation to one another, and in relation to the expression of even-skipped (Calb-eve), a component of the pair-rule system that is directly regulated by the gap genes in Drosophila. We find that hunchback (Calb-hb), Krüppel (Calb-Kr), knirps (Calb-knl), giant (Calb-gt) and tailless (Calb-tll) are all expressed in patterns consistent with a gap segmentation role during blastoderm formation, but huckebein (Calb-hkb) is not. In the anterior half of the embryo, the relative positions of the gap gene expression domains in relation to one another, and in relation to the eve stripes, are rather well conserved. In the posterior half of the embryo, there are significant differences. Posteriorly, Calb-gt is expressed only transiently and very weakly, in a domain that overlaps entirely with that of Calb-knl. At late blastoderm stages, none of the candidate genes we have tested is expressed in the region between the posterior Calb-knl domain and Calb-tll. It is likely that the regulation of Calb-eve expression in this posterior region depends on combinations of gap gene factors that differ from those utilised for the same stripes in Drosophila. Both the gap and the pair-rule patterns of gene expression are dynamic in Clogmia, as they are in Drosophila, shifting anteriorly as blastoderm development proceeds.


Assuntos
Proteínas de Drosophila/genética , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Homeodomínio/genética , Mariposas/genética , Fatores de Transcrição/genética , Animais , Blastoderma/metabolismo , Padronização Corporal , Clonagem Molecular , Drosophila melanogaster/embriologia , Drosophila melanogaster/genética , Embrião não Mamífero/metabolismo , Perfilação da Expressão Gênica , Hibridização In Situ , Modelos Genéticos , Estrutura Terciária de Proteína , Fatores de Tempo
17.
Evol Dev ; 12(4): 347-52, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20618430

RESUMO

Geophilomorph centipedes show variation in segment number (a) between closely related species and (b) within and between populations of the same species. We have previously shown for a Scottish population of the coastal centipede Strigamia maritima that the temperature of embryonic development is one of the factors that affects the segment number of hatchlings, and hence of adults, as these animals grow epimorphically--that is, without postembryonic addition of segments. Here, we show, using temperature-shift experiments, that the main developmental period during which embryos are sensitive to environmental temperature is surprisingly early, during blastoderm formation and before, or very shortly after, the onset of segmentation.


Assuntos
Artrópodes/embriologia , Padronização Corporal/fisiologia , Desenvolvimento Embrionário , Temperatura , Animais , Artrópodes/anatomia & histologia , Blastoderma/crescimento & desenvolvimento , Blastoderma/ultraestrutura , Embrião não Mamífero , Feminino , Masculino , Fatores de Tempo
18.
Evol Dev ; 12(4): 363-72, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20618432

RESUMO

In arthropods, such as Drosophila melanogaster, the leg gap genes homothorax (hth), extradenticle (exd), dachshund (dac), and Distal-less (Dll) regionalize the legs in order to facilitate the subsequent segmentation of the legs. We have isolated homologs of all four leg gap genes from the onychophoran Euperipatoides kanangrensis and have studied their expression. We show that leg regionalization takes place in the legs of onychophorans even though they represent simple and nonsegmented appendages. This implies that leg regionalization evolved for a different function and was only later co-opted for a role in leg segmentation. We also show that the leg gap gene patterns in onychophorans (especially of hth and exd) are similar to the patterns in crustaceans and insects, suggesting that this is the plesiomorphic state in arthropods. The reversed hth and exd patterns in chelicerates and myriapods are therefore an apomorphy for this group, the Myriochelata, lending support to the Myriochelata and Tetraconata clades in arthropod phylogeny.


Assuntos
Artrópodes/crescimento & desenvolvimento , Padronização Corporal/genética , Extremidades/crescimento & desenvolvimento , Regulação da Expressão Gênica no Desenvolvimento , Animais , Artrópodes/genética , Embrião não Mamífero/anatomia & histologia , Embrião não Mamífero/metabolismo , Desenvolvimento Embrionário/genética , Feminino , Filogenia
19.
Dev Genes Evol ; 220(3-4): 117-22, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20567844

RESUMO

The arthropod head problem has puzzled zoologists for more than a century. The head of adult arthropods is a complex structure resulting from the modification, fusion and migration of an uncertain number of segments. In contrast, onychophorans, which are the probable sister group to the arthropods, have a rather simple head comprising three segments that are well defined during development, and give rise to the adult head with three pairs of appendages specialised for sensory and food capture/manipulative purposes. Based on the expression pattern of the anterior Hox genes labial, proboscipedia, Hox3 and Deformed, we show that the third of these onychophoran segments, bearing the slime papillae, can be correlated to the tritocerebrum, the most anterior Hox-expressing arthropod segment. This implies that both the onychophoran antennae and jaws are derived from a more anterior, Hox-free region corresponding to the proto and deutocerebrum of arthropods. Our data provide molecular support for the proposal that the onychophoran head possesses a well-developed appendage that corresponds to the anterior, apparently appendage-less region of the arthropod head.


Assuntos
Anelídeos/genética , Padronização Corporal/genética , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Homeodomínio/genética , Animais , Anelídeos/embriologia , Artrópodes/embriologia , Artrópodes/genética , DNA Complementar/química , DNA Complementar/genética , Embrião não Mamífero/anatomia & histologia , Embrião não Mamífero/embriologia , Embrião não Mamífero/metabolismo , Evolução Molecular , Perfilação da Expressão Gênica , Cabeça/anatomia & histologia , Cabeça/embriologia , Proteínas de Homeodomínio/classificação , Hibridização In Situ , Invertebrados/classificação , Invertebrados/embriologia , Invertebrados/genética , Modelos Anatômicos , Dados de Sequência Molecular , Filogenia , Análise de Sequência de DNA
20.
PLoS Comput Biol ; 5(10): e1000548, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19876378

RESUMO

The early embryo of Drosophila melanogaster provides a powerful model system to study the role of genes in pattern formation. The gap gene network constitutes the first zygotic regulatory tier in the hierarchy of the segmentation genes involved in specifying the position of body segments. Here, we use an integrative, systems-level approach to investigate the regulatory effect of the terminal gap gene huckebein (hkb) on gap gene expression. We present quantitative expression data for the Hkb protein, which enable us to include hkb in gap gene circuit models. Gap gene circuits are mathematical models of gene networks used as computational tools to extract regulatory information from spatial expression data. This is achieved by fitting the model to gap gene expression patterns, in order to obtain estimates for regulatory parameters which predict a specific network topology. We show how considering variability in the data combined with analysis of parameter determinability significantly improves the biological relevance and consistency of the approach. Our models are in agreement with earlier results, which they extend in two important respects: First, we show that Hkb is involved in the regulation of the posterior hunchback (hb) domain, but does not have any other essential function. Specifically, Hkb is required for the anterior shift in the posterior border of this domain, which is now reproduced correctly in our models. Second, gap gene circuits presented here are able to reproduce mutants of terminal gap genes, while previously published models were unable to reproduce any null mutants correctly. As a consequence, our models now capture the expression dynamics of all posterior gap genes and some variational properties of the system correctly. This is an important step towards a better, quantitative understanding of the developmental and evolutionary dynamics of the gap gene network.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Redes Reguladoras de Genes/fisiologia , Modelos Genéticos , Biologia de Sistemas/métodos , Algoritmos , Animais , Simulação por Computador , Proteínas de Ligação a DNA/genética , Proteínas de Drosophila/genética , Drosophila melanogaster/embriologia , Embrião não Mamífero/metabolismo , Imuno-Histoquímica , Análise dos Mínimos Quadrados , Mutação , Fatores de Transcrição , Proteínas Ativadoras de ras GTPase/genética , Proteínas Ativadoras de ras GTPase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA