Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Neurobiol Stress ; 26: 100561, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37576349

RESUMO

Acute stress exerts substantial effects on episodic memory, which are often mediated by glucocorticoids, the end-product of the hypothalamic-pituitary-adrenal axis. Surprisingly little is known, however, about the influence of acute stress on human spatial navigation. One specific navigational strategy is path integration, which is linked to the medial entorhinal cortex, a region harboring glucocorticoid receptors and thus susceptible for stress effects. Here, we investigated effects of acute stress on path integration performance using a virtual homing task. We divided a sample of healthy young male participants into a stress group (nstress = 32) and a control group (ncontrol = 34). The stress group underwent the socially evaluated cold-pressor test, while the control group underwent a non-stressful control procedure. Stress induction was confirmed via physiological and subjective markers, including an increase of salivary cortisol concentrations. We applied linear mixed models to investigate the effect of acute stress on path integration depending on task difficulty and the presence or absence of spatial cues. These analyses revealed that stress impaired path integration especially in trials with high difficulty and led to greater decline of performance upon removal of spatial cues. Stress-induced deficits were strongly related to impaired distance estimation, and to a lesser extent to compromised rotation estimation. These behavioral findings are in accordance with the hypothesis that acute stress impairs path integration processes, potentially by affecting the entorhinal grid cell system. More generally, the current data suggests acute stress to impair cognitive functions mediated by medial temporal lobe regions outside the hippocampus.

2.
Behav Brain Res ; 442: 114305, 2023 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-36682499

RESUMO

Repeated exposure to stress (chronic stress) can cause excess levels of circulating cortisol and has detrimental influences on various cognitive functions including long-term memory and navigation. However, it remains an open question whether chronic stress affects path integration, a navigational strategy that presumably relies on the functioning of grid cells in the medial entorhinal cortex. The entorhinal cortex is a brain region in the medial temporal lobe, which contains multiple cell types involved in spatial navigation (and episodic memory), and a high number of corticosteroid receptors, predisposing it as a potential target of cortisol effects. Here, our goal was to investigate the association between chronic stress and path integration performance. We assessed chronic stress via hair cortisol concentration (physiological measure) and the Perceived Stress Questionnaire (subjective measure) in 52 female participants aged 22-65 years. Path integration was measured using a virtual homing task. Linear mixed models revealed selective impairments associated with chronic stress that depended on error type and environmental features. When focusing on distance estimations in the path integration task, we observed a significant relationship to hair cortisol concentrations indicating impaired path integration particularly during trials with higher difficulty in participants with high hair cortisol concentrations. This relationship especially emerged in the absence of spatial cues (a boundary or a landmark), and particularly in participants who reported high levels of subjectively experienced chronic stress. The findings are in line with the hypothesis that chronic stress compromises path integration, possibly via an effect on the entorhinal grid cell system.


Assuntos
Hidrocortisona , Navegação Espacial , Humanos , Feminino , Córtex Entorrinal/fisiologia , Lobo Temporal , Cognição/fisiologia , Sinais (Psicologia) , Navegação Espacial/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA