Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 89
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-37830983

RESUMO

We seek to elucidate the precise nature of mechanical loading that precipitates conduction deficits in a concealed-phase model of arrhythmogenic cardiomyopathy (ACM). ACM is a progressive disorder often resulting from mutations in desmosomal proteins. Exercise has been shown to worsen disease progression and unmask arrhythmia vulnerability, yet the underlying pathomechanisms may depend on the type and intensity of exercise. Because exercise causes myriad changes to multiple inter-dependent hemodynamic parameters, it is difficult to isolate its effects to specific changes in mechanical load. Here, we use engineered heart tissues (EHTs) with iPSC-derived cardiomyocytes expressing R451G desmoplakin, an ACM-linked mutation, which results in a functionally null model of desmoplakin (DSP). We also use a novel bioreactor to independently perturb tissue strain at different time points during the cardiac cycle. We culture EHTs under three strain regimes: normal physiological shortening; increased diastolic stretch, simulating high preload; and isometric culture, simulating high afterload. DSPR451G EHTs that have been cultured isometrically undergo adaptation, with no change in action potential parameters, conduction velocity, or contractile function, a phenotype confirmed by global proteomic analysis. However, when DSPR451G EHTs are subjected to increased diastolic stretch, they exhibit concomitant reductions in conduction velocity and the expression of connexin-43. These effects are rescued by inhibition of both lysosome activity and ERK signaling. Our results indicate that the response of DSPR451G EHTs to mechanical stimuli depends on the strain and the timing of the applied stimulus, with increased diastolic stretch unmasking conduction deficits in a concealed-phase model of ACM.

2.
Circulation ; 144(6): 441-454, 2021 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-34024116

RESUMO

BACKGROUND: Arginine (Arg) 14 deletion (R14del) in the calcium regulatory protein phospholamban (hPLNR14del) has been identified as a disease-causing mutation in patients with an inherited cardiomyopathy. Mechanisms underlying the early arrhythmogenic phenotype that predisposes carriers of this mutation to sudden death with no apparent structural remodeling remain unclear. METHODS: To address this, we performed high spatiotemporal resolution optical mapping of intact hearts from adult knock-in mice harboring the human PLNWT (wildtype [WT], n=12) or the heterozygous human PLNR14del mutation (R14del, n=12) before and after ex vivo challenge with isoproterenol and rapid pacing. RESULTS: Adverse electrophysiological remodeling was evident in the absence of significant structural or hemodynamic changes. R14del hearts exhibited increased arrhythmia susceptibility compared with wildtype. Underlying this susceptibility was preferential right ventricular action potential prolongation that was unresponsive to ß-adrenergic stimulation. A steep repolarization gradient at the left ventricular/right ventricular interface provided the substrate for interventricular activation delays and ultimately local conduction block during rapid pacing. This was followed by the initiation of macroreentrant circuits supporting the onset of ventricular tachycardia. Once sustained, these circuits evolved into high-frequency rotors, which in their majority were pinned to the right ventricle. These rotors exhibited unique spatiotemporal dynamics that promoted their increased stability in R14del compared with wildtype hearts. CONCLUSIONS: Our findings highlight the crucial role of primary electric remodeling caused by the hPLNR14del mutation. These inherently arrhythmogenic features form the substrate for adrenergic-mediated VT at early stages of PLNR14del induced cardiomyopathy.


Assuntos
Arritmias Cardíacas/diagnóstico , Arritmias Cardíacas/etiologia , Proteínas de Ligação ao Cálcio/genética , Cardiomiopatias/complicações , Cardiomiopatias/genética , Suscetibilidade a Doenças , Deleção de Sequência , Potenciais de Ação , Alelos , Substituição de Aminoácidos , Animais , Modelos Animais de Doenças , Eletrocardiografia , Loci Gênicos , Predisposição Genética para Doença , Testes de Função Cardíaca , Humanos , Camundongos , Camundongos Transgênicos
3.
J Mol Cell Cardiol ; 127: 20-30, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30502350

RESUMO

BACKGROUND: Pulmonary arterial hypertension (PAH) results in right ventricular (RV) failure, electro-mechanical dysfunction and heightened risk of sudden cardiac death (SCD), although exact mechanisms and predisposing factors remain unclear. Because impaired chronotropic response to exercise is a strong predictor of early mortality in patients with PAH, we hypothesized that progressive elevation in heart rate can unmask ventricular tachyarrhythmias (VT) in a rodent model of monocrotaline (MCT)-induced PAH. We further hypothesized that intra-tracheal gene delivery of aerosolized AAV1.SERCA2a (AAV1.S2a), an approach which improves pulmonary vascular remodeling in PAH, can suppress VT in this model. OBJECTIVE: To determine the efficacy of pulmonary AAV1.S2a in reversing electrophysiological (EP) remodeling and suppressing VT in PAH. METHODS: Male rats received subcutaneous injection of MCT (60 mg/kg) leading to advanced PAH. Three weeks following MCT, rats underwent intra-tracheal delivery of aerosolized AAV1.S2a (MCT + S2a, N = 8) or saline (MCT, N = 9). Age-matched rats served as controls (CTRL, N = 7). The EP substrate and risk of VT were determined using high-resolution optical action potential (AP) mapping ex vivo. The expression levels of key ion channel subunits, fibrosis markers and hypertrophy indices were measured by RT-PCR and histochemical analyses. RESULTS: Over 80% of MCT but none of the CTRL hearts were prone to sustained VT by rapid pacing (P < .01). Aerosolized gene delivery of AAV1.S2a to the lung suppressed the incidence of VT to <15% (P < .05). Investigation of the EP substrate revealed marked prolongation of AP duration (APD), increased APD heterogeneity, a reversal in the trans-epicardial APD gradient, and marked conduction slowing in untreated MCT compared to CTRL hearts. These myocardial EP changes coincided with major remodeling in the expression of K and Ca channel subunits, decreased expression of Cx43 and increased expression of pro-fibrotic and pro-hypertrophic markers. Intra-tracheal gene delivery of aerosolized AAV1 carrying S2a but not luciferase resulted in selective upregulation of the human isoform of SERCA2a in the lung but not the heart. This pulmonary intervention, in turn, ameliorated MCT-induced APD prolongation, reversed spatial APD heterogeneity, normalized myocardial conduction, and suppressed the incidence of pacing-induced VT. Comparison of the minimal conduction velocity (CV) generated at the fastest pacing rate before onset of VT or at the end of the protocol revealed significantly lower values in untreated compared to AAV1.S2a treated PAH and CTRL hearts. Reversal of EP remodeling by pulmonary AAV1.S2a gene delivery was accompanied by restored expression of key ion channel transcripts. Restored expression of Cx43 and collagen but not the pore-forming Na channel subunit Nav1.5 likely ameliorated VT by improving CV at rapid rates in PAH. CONCLUSION: Aerosolized AAV1.S2a gene delivery selectively to the lungs ameliorates myocardial EP remodeling and VT susceptibility at rapid heart rates. Our findings highlight for the first time the utility of a non-cardiac gene therapy approach for arrhythmia suppression.


Assuntos
Aerossóis/administração & dosagem , Arritmias Cardíacas/terapia , Técnicas de Transferência de Genes , Hipertensão Arterial Pulmonar/terapia , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/genética , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/uso terapêutico , Traqueia/metabolismo , Potenciais de Ação , Animais , Arritmias Cardíacas/complicações , Arritmias Cardíacas/fisiopatologia , Conexina 43/metabolismo , Modelos Animais de Doenças , Terapia Genética , Sistema de Condução Cardíaco/fisiopatologia , Humanos , Masculino , Canais de Potássio/genética , Canais de Potássio/metabolismo , Hipertensão Arterial Pulmonar/complicações , Hipertensão Arterial Pulmonar/fisiopatologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos Sprague-Dawley
4.
J Cardiovasc Electrophysiol ; 30(11): 2229-2238, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31507008

RESUMO

OBJECTIVES: To differentiate electrograms representing sites of active atrial fibrillation (AF) drivers from passive ones. BACKGROUND: Ablation of complex-fractionated atrial electrograms (CFAEs) is controversial due to difficulty in distinguishing CFAEs representing sites of active AF drivers from passive mechanisms. We hypothesized that active CFAE sites exhibit repetitive wavefront directionality, thereby inscribing an electrogram conformation (Egm-C) that is more recurrent compared with passive CFAE sites; and that can be differentiated from passive CFAEs using nonlinear recurrence quantification analysis (RQA). METHODS: We developed multiple computer models of active CFAE mechanisms (ie, rotors) and passive CFAE mechanisms (ie, wavebreak, slow conduction, and double potentials). CFAE signals were converted into discrete time-series representing Egm-C. The RQA algorithm was used to compare signals derived from active CFAE sites to those from passive CFAEs sites. The RQA algorithm was then applied to human CFAE signals collected during AF ablation (n = 17 patients). RESULTS: RQA was performed in silico on simulated bipolar CFAEs within active (n = 45) and passive (n = 60) areas. Recurrence of Egm-C was significantly higher in active compared with passive CFAE sites (31.8% ± 19.6% vs 0.3% ± 0.5%, respectively, P < .0001) despite no difference in mean cycle length (CL). Similarly, for human AF (n = 39 signals), Egm-C recurrence was higher in active vs passive CFAE areas despite similar CLs (%recurrence 13.6% ± 15.5% vs 0.1% ± 0.3%, P < .002; mean CL 102.5 ± 14.3 vs 106.6 ± 14.4, P = NS). CONCLUSION: Active CFAEs critical to AF maintenance exhibit higher Egm-C recurrence and can be differentiated from passive bystander CFAE sites using RQA.


Assuntos
Potenciais de Ação , Algoritmos , Fibrilação Atrial/diagnóstico , Técnicas Eletrofisiológicas Cardíacas , Átrios do Coração/fisiopatologia , Frequência Cardíaca , Processamento de Sinais Assistido por Computador , Idoso , Fibrilação Atrial/fisiopatologia , Fibrilação Atrial/cirurgia , Ablação por Cateter , Simulação por Computador , Feminino , Átrios do Coração/cirurgia , Humanos , Masculino , Pessoa de Meia-Idade , Modelos Cardiovasculares , Valor Preditivo dos Testes , Fatores de Tempo
7.
Cardiovasc Diabetol ; 16(1): 120, 2017 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-28962617

RESUMO

Atrial fibrillation (AF) is the most common sustained cardiac arrhythmia in humans. Several risk factors promote AF, among which diabetes mellitus has emerged as one of the most important. The growing recognition that obesity, diabetes and AF are closely intertwined disorders has spurred major interest in uncovering their mechanistic links. In this article we provide an update on the growing evidence linking oxidative stress and inflammation to adverse atrial structural and electrical remodeling that leads to the onset and maintenance of AF in the diabetic heart. We then discuss several therapeutic strategies to improve atrial excitability by targeting pathways that control oxidative stress and inflammation.


Assuntos
Fibrilação Atrial/metabolismo , Diabetes Mellitus/metabolismo , Mediadores da Inflamação/metabolismo , Obesidade/metabolismo , Estresse Oxidativo/fisiologia , Animais , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Fibrilação Atrial/tratamento farmacológico , Fibrilação Atrial/epidemiologia , Diabetes Mellitus/tratamento farmacológico , Diabetes Mellitus/epidemiologia , Humanos , Inflamação/tratamento farmacológico , Inflamação/epidemiologia , Inflamação/metabolismo , Mediadores da Inflamação/antagonistas & inibidores , Obesidade/tratamento farmacológico , Obesidade/epidemiologia , Estresse Oxidativo/efeitos dos fármacos
8.
FASEB J ; 28(2): 644-54, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24174427

RESUMO

Cardiac experimental biology and translational research would benefit from an in vitro surrogate for human heart muscle. This study investigated structural and functional properties and interventional responses of human engineered cardiac tissues (hECTs) compared to human myocardium. Human embryonic stem cell-derived cardiomyocytes (hESC-CMs, >90% troponin-positive) were mixed with collagen and cultured on force-sensing elastomer devices. hECTs resembled trabecular muscle and beat spontaneously (1.18 ± 0.48 Hz). Microstructural features and mRNA expression of cardiac-specific genes (α-MHC, SERCA2a, and ACTC1) were comparable to human myocardium. Optical mapping revealed cardiac refractoriness with loss of 1:1 capture above 3 Hz, and cycle length dependence of the action potential duration, recapitulating key features of cardiac electrophysiology. hECTs reconstituted the Frank-Starling mechanism, generating an average maximum twitch stress of 660 µN/mm(2) at Lmax, approaching values in newborn human myocardium. Dose-response curves followed exponential pharmacodynamics models for calcium chloride (EC50 1.8 mM) and verapamil (IC50 0.61 µM); isoproterenol elicited a positive chronotropic but negligible inotropic response, suggesting sarcoplasmic reticulum immaturity. hECTs were amenable to gene transfer, demonstrated by successful transduction with Ad.GFP. Such 3-D hECTs recapitulate an early developmental stage of human myocardium and promise to offer an alternative preclinical model for cardiology research.


Assuntos
Miocárdio/citologia , Engenharia Tecidual/métodos , Linhagem Celular , Eletrofisiologia , Humanos
10.
Circ Res ; 112(2): e8-13, 2013 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-23329797

RESUMO

RATIONALE: We have shown that partial dissociation of hexokinase II (HKII) from mitochondria in the intact heart using low-dose transactivating transcriptional factor (TAT)-HKII (200 nmol/L) prevents the cardioprotective effects of ischemic preconditioning, whereas high-dose TAT-HKII (10 µmol/L) administration results in rapid myocardial dysfunction, mitochondrial depolarization, and disintegration. In this issue of Circulation Research, Pasdois et al argue that the deleterious effects of TAT-HKII administration on cardiac function are likely because of vasoconstriction and ensuing ischemia. OBJECTIVE: To investigate whether altered vascular function and ensuing ischemia recapitulate the deleterious effects of TAT-HKII in intact myocardium. METHODS AND RESULTS: Using a variety of complementary techniques, including mitochondrial membrane potential (ΔΨm) imaging, high-resolution optical action potential mapping, analysis of lactate production, nicotinamide adenine dinucleotide epifluorescence, lactate dehydrogenase release, and electron microscopy, we provide direct evidence that refutes the notion that acute myocardial dysfunction by high-dose TAT-HKII peptide administration is a consequence of impaired vascular function. Moreover, we demonstrate that low-dose TAT-HKII treatment, which abrogates the protective effects of ischemic preconditioning, is not associated with ischemia or ischemic injury. CONCLUSIONS: Our findings challenge the notion that the effects of TAT-HKII are attributable to impaired vascular function and ensuing ischemia, thereby lending further credence to the role of mitochondria-bound HKII as a critical regulator of cardiac function, ischemia-reperfusion injury, and cardioprotection by ischemic preconditioning.


Assuntos
Circulação Coronária/fisiologia , Produtos do Gene tat/administração & dosagem , Hexoquinase/administração & dosagem , Traumatismo por Reperfusão Miocárdica/induzido quimicamente , Perfusão/métodos , Vasoconstrição/fisiologia , Animais , Masculino
11.
Mol Ther ; 22(12): 2038-2045, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25023328

RESUMO

Cardiac gene therapy has emerged as a promising option to treat advanced heart failure (HF). Advances in molecular biology and gene targeting approaches are offering further novel options for genetic manipulation of the cardiovascular system. The aim of this study was to improve cardiac function in chronic HF by overexpressing constitutively active inhibitor-1 (I-1c) using a novel cardiotropic vector generated by capsid reengineering of adeno-associated virus (BNP116). One month after a large anterior myocardial infarction, 20 Yorkshire pigs randomly received intracoronary injection of either high-dose BNP116.I-1c (1.0 × 10(13) vector genomes (vg), n = 7), low-dose BNP116.I-1c (3.0 × 10(12) vg, n = 7), or saline (n = 6). Compared to baseline, mean left ventricular ejection fraction increased by 5.7% in the high-dose group, and by 5.2% in the low-dose group, whereas it decreased by 7% in the saline group. Additionally, preload-recruitable stroke work obtained from pressure-volume analysis demonstrated significantly higher cardiac performance in the high-dose group. Likewise, other hemodynamic parameters, including stroke volume and contractility index indicated improved cardiac function after the I-1c gene transfer. Furthermore, BNP116 showed a favorable gene expression pattern for targeting the heart. In summary, I-1c overexpression using BNP116 improves cardiac function in a clinically relevant model of ischemic HF.


Assuntos
Dependovirus/genética , Insuficiência Cardíaca/genética , Insuficiência Cardíaca/terapia , Infarto do Miocárdio/fisiopatologia , Infarto do Miocárdio/terapia , Proteína Fosfatase 1/genética , Animais , Dependovirus/classificação , Dependovirus/enzimologia , Modelos Animais de Doenças , Terapia Genética , Vetores Genéticos/administração & dosagem , Insuficiência Cardíaca/fisiopatologia , Humanos , Injeções Intra-Arteriais , Proteína Fosfatase 1/metabolismo , Volume Sistólico , Suínos
12.
Gene Ther ; 21(4): 379-386, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24572786

RESUMO

Adeno-associated virus (AAV)-based vectors are promising vehicles for therapeutic gene delivery, including for the treatment for heart failure. It has been demonstrated for each of the AAV serotypes 1 through 8 that inhibition of the proteasome results in increased transduction efficiencies. For AAV9, however, the effect of proteasome inhibitors on in vivo transduction has until now not been evaluated. Here we demonstrate, in a well-established rodent heart failure model, that concurrent treatment with the proteasome inhibitor bortezomib does not enhance the efficacy of AAV9.SERCA2a to improve cardiac function as examined by echocardiography and pressure volume analysis. Western blot analysis of SERCA2a protein and reverse transcription-PCR of SERCA2a mRNA demonstrated that bortezomib had no effect on either endogenous rat SERCA2a levels nor on expression levels of human SERCA2a delivered by AAV9.SERCA2a. Similarly, the number of AAV9 genomes in heart samples was unaffected by bortezomib treatment. Interestingly, whereas transduction of HeLa cells and neonatal rat cardiomyocytes by AAV9 was stimulated by bortezomib, transduction of adult rat cardiomyocytes was inhibited. These results indicate an organ/cell-type-specific effect of proteasome inhibition on AAV9 transduction. A future detailed analysis of the underlying molecular mechanisms promises to facilitate the development of improved AAV vectors.


Assuntos
Ácidos Borônicos/administração & dosagem , Terapia Genética , Insuficiência Cardíaca/terapia , Miócitos Cardíacos/metabolismo , Pirazinas/administração & dosagem , Animais , Bortezomib , Dependovirus/genética , Modelos Animais de Doenças , Vetores Genéticos , Insuficiência Cardíaca/genética , Humanos , Miocárdio/patologia , Miócitos Cardíacos/efeitos dos fármacos , Ratos , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/biossíntese
13.
Pflugers Arch ; 466(6): 1211-7, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24566976

RESUMO

In this article, we review recent advances in our understanding of arrhythmia mechanisms in the failing heart. We focus on changes in repolarization, conduction, and intracellular calcium cycling because of their importance to the vast majority of clinical arrhythmias in heart failure. We highlight recent efforts to combat arrhythmias using gene-based approaches that target ion channel, gap junction, and calcium cycling proteins. We further discuss the advantages and limitations associated with individual approaches.


Assuntos
Arritmias Cardíacas/genética , Terapia Genética , Insuficiência Cardíaca/genética , Canais Iônicos/genética , Potenciais de Ação , Animais , Arritmias Cardíacas/fisiopatologia , Arritmias Cardíacas/terapia , Sinalização do Cálcio , Conexina 43/genética , Conexina 43/metabolismo , Insuficiência Cardíaca/fisiopatologia , Insuficiência Cardíaca/terapia , Humanos , Canais Iônicos/metabolismo
14.
Methods Mol Biol ; 2803: 75-86, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38676886

RESUMO

Mitochondria within a cardiomyocyte form a highly dynamic network that undergoes fusion and fission events in response to acute and chronic stressors, such as hyperglycemia and diabetes mellitus. Changes in mitochondrial architecture and morphology not only reflect their capacity for oxidative phosphorylation and ATP synthesis but also impact their subcellular localization and interaction with other organelles. The role of these ultrastructural abnormalities in modulating electrophysiological properties and excitation-contraction coupling remains largely unknown and warrants direct investigation considering the growing appreciation of the functional and structural coupling between the mitochondrial network, the calcium cycling machinery, and sarcolemmal ion channels in the cardiac myocyte. In this Methods in Molecular Biology chapter, we provide a protocol that allows for a quantitative assessment of mitochondrial shape and morphology in control and diabetic hearts that had undergone detailed electrophysiological measurements using high resolution optical action potential (AP) mapping.


Assuntos
Potenciais de Ação , Mitocôndrias Cardíacas , Miócitos Cardíacos , Animais , Mitocôndrias Cardíacas/metabolismo , Mitocôndrias Cardíacas/ultraestrutura , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Potenciais de Ação/fisiologia , Diabetes Mellitus Experimental/fisiopatologia , Diabetes Mellitus Experimental/patologia , Ratos , Fenômenos Eletrofisiológicos , Miocárdio/patologia , Miocárdio/metabolismo
15.
Am J Physiol Heart Circ Physiol ; 304(7): H916-26, 2013 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-23376824

RESUMO

Chronic hyperglycemia in type-1 diabetes mellitus is associated with oxidative stress (OS) and sudden death. Mechanistic links remain unclear. We investigated changes in electrophysiological (EP) properties in a model of chronic hyperglycemia before and after challenge with OS by GSH oxidation and tested reversibility of EP remodeling by insulin. Guinea pigs survived for 1 mo following streptozotocin (STZ) or saline (sham) injection. A treatment group received daily insulin for 2 wk to reverse STZ-induced hyperglycemia (STZ + Ins). EP properties were measured using high-resolution optical action potential mapping before and after challenge of hearts with diamide. Despite elevation of glucose levels in STZ compared with sham-operated (P = 0.004) and STZ + Ins (P = 0.002) animals, average action potential duration (APD) and arrhythmia propensity were not altered at baseline. Diamide promoted early (<10 min) formation of arrhythmic triggers reflected by a higher arrhythmia scoring index in STZ (P = 0.045) and STZ + Ins (P = 0.033) hearts compared with sham-operated hearts. APD heterogeneity underwent a more pronounced increase in response to diamide in STZ and STZ + Ins hearts compared with sham-operated hearts. Within 30 min, diamide resulted in spontaneous incidence of ventricular tachycardia and ventricular fibrillation (VT/VF) in 3/6, 2/5, 1/5, and 0/4 STZ, STZ + Ins, sham-operated, and normal hearts, respectively. Hearts prone to VT/VF exhibited greater APD heterogeneity (P = 0.010) compared with their VT/VF-free counterparts. Finally, altered EP properties in STZ were not rescued by insulin. In conclusion, GSH oxidation enhances APD heterogeneity and increases arrhythmia scoring index in a guinea pig model of chronic hyperglycemia. Despite normalization of glycemic levels by insulin, these proarrhythmic properties are not reversed, suggesting the importance of targeting antioxidant defenses for arrhythmia suppression.


Assuntos
Glutationa/metabolismo , Hiperglicemia/complicações , Estresse Oxidativo , Taquicardia Ventricular/metabolismo , Fibrilação Ventricular/metabolismo , Potenciais de Ação/efeitos dos fármacos , Animais , Antibióticos Antineoplásicos/farmacologia , Glicemia/metabolismo , Diamida/farmacologia , Cobaias , Coração/fisiopatologia , Hiperglicemia/induzido quimicamente , Hiperglicemia/metabolismo , Insulina/farmacologia , Oxirredução , Pontuação de Propensão , Estreptozocina/farmacologia , Taquicardia Ventricular/etiologia , Fibrilação Ventricular/etiologia , Remodelação Ventricular/efeitos dos fármacos
16.
Circ Res ; 108(10): 1165-9, 2011 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-21527739

RESUMO

RATIONALE: Isoforms I and II of the glycolytic enzyme hexokinase (HKI and HKII) are known to associate with mitochondria. It is unknown whether mitochondria-bound hexokinase is mandatory for ischemic preconditioning and normal functioning of the intact, beating heart. OBJECTIVE: We hypothesized that reducing mitochondrial hexokinase would abrogate ischemic preconditioning and disrupt myocardial function. METHODS AND RESULTS: Ex vivo perfused HKII(+/-) hearts exhibited increased cell death after ischemia and reperfusion injury compared with wild-type hearts; however, ischemic preconditioning was unaffected. To investigate acute reductions in mitochondrial HKII levels, wild-type hearts were treated with a TAT control peptide or a TAT-HK peptide that contained the binding motif of HKII to mitochondria, thereby disrupting the mitochondrial HKII association. Mitochondrial hexokinase was determined by HKI and HKII immunogold labeling and electron microscopy analysis. Low-dose (200 nmol/L) TAT-HK treatment significantly decreased mitochondrial HKII levels without affecting baseline cardiac function but dramatically increased ischemia-reperfusion injury and prevented the protective effects of ischemic preconditioning. Treatment for 15 minutes with high-dose (10 µmol/L) TAT-HK resulted in acute mitochondrial depolarization, mitochondrial swelling, profound contractile impairment, and severe cardiac disintegration. The detrimental effects of TAT-HK treatment were mimicked by mitochondrial membrane depolarization after mild mitochondrial uncoupling that did not cause direct mitochondrial permeability transition opening. CONCLUSIONS: Acute low-dose dissociation of HKII from mitochondria in heart prevented ischemic preconditioning, whereas high-dose HKII dissociation caused cessation of cardiac contraction and tissue disruption, likely through an acute mitochondrial membrane depolarization mechanism. The results suggest that the association of HKII with mitochondria is essential for the protective effects of ischemic preconditioning and normal cardiac function through maintenance of mitochondrial potential.


Assuntos
Hexoquinase/metabolismo , Precondicionamento Isquêmico Miocárdico/métodos , Potencial da Membrana Mitocondrial , Mitocôndrias Cardíacas/enzimologia , Mitocôndrias Cardíacas/patologia , Miocárdio/enzimologia , Miocárdio/patologia , Animais , Triagem de Portadores Genéticos , Hexoquinase/deficiência , Hexoquinase/genética , Masculino , Potencial da Membrana Mitocondrial/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mitocôndrias Cardíacas/genética , Necrose/enzimologia , Necrose/genética , Necrose/patologia , Ligação Proteica/genética , Ratos , Fatores de Tempo , Produtos do Gene tat do Vírus da Imunodeficiência Humana/fisiologia
17.
Circ Res ; 106(6): 1153-63, 2010 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-20167932

RESUMO

RATIONALE: Gap junctions mediate cell-to-cell electric coupling of cardiomyocytes. The primary gap junction protein in the working myocardium, connexin43 (Cx43), exhibits increased localization at the lateral membranes of cardiomyocytes in a variety of heart diseases, although the precise location and function of this population is unknown. OBJECTIVE: To define the subcellular location of lateralized gap junctions at the light and electron microscopic level, and further characterize the biochemical regulation of gap junction turnover. METHODS AND RESULTS: By electron microscopy, we characterized gap junctions formed between cardiomyocyte lateral membranes in failing canine ventricular myocardium. These gap junctions were varied in structure and appeared to be extensively internalizing. Internalized gap junctions were incorporated into multilamellar membrane structures, with features characteristic of autophagosomes. Intracellular Cx43 extensively colocalized with the autophagosome marker GFP-LC3 when both proteins were exogenously expressed in HeLa cells, and endogenous Cx43 colocalized with GFP-LC3 in neonatal rat ventricular myocytes. Furthermore, a distinct phosphorylated form of Cx43, as well as the autophagosome-targeted form of LC3 (microtubule-associated protein light chain 3) targeted to lipid rafts in cardiac tissue, and both were increased in heart failure. CONCLUSIONS: Our data demonstrate a previously unrecognized pathway of gap junction internalization and degradation in the heart and identify a cellular pathway with potential therapeutic implications.


Assuntos
Conexina 43/metabolismo , Junções Comunicantes/metabolismo , Junções Comunicantes/ultraestrutura , Insuficiência Cardíaca/metabolismo , Insuficiência Cardíaca/patologia , Miocárdio/metabolismo , Miocárdio/ultraestrutura , Animais , Autofagia , Conexina 43/genética , Modelos Animais de Doenças , Cães , Células HeLa , Ventrículos do Coração/metabolismo , Ventrículos do Coração/ultraestrutura , Humanos , Microdomínios da Membrana/metabolismo , Microdomínios da Membrana/ultraestrutura , Microscopia Confocal , Microscopia Eletrônica de Transmissão , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Fosforilação , Ratos , Ratos Sprague-Dawley , Proteínas Recombinantes de Fusão/metabolismo , Transfecção
18.
Heart Rhythm ; 19(1): 113-124, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34563688

RESUMO

BACKGROUND: Electrophysiological (EP) properties have been studied mainly in the monocrotaline model of pulmonary arterial hypertension (PAH). Findings are confounded by major extrapulmonary toxicities, which preclude the ability to draw definitive conclusions regarding the role of PAH per se in EP remodeling. OBJECTIVE: The purpose of this study was to investigate the EP substrate and arrhythmic vulnerability of a new model of PAH that avoids extracardiopulmonary toxicities. METHODS: Sprague-Dawley rats underwent left pneumonectomy (Pn) followed by injection of the vascular endothelial growth factor inhibitor Sugen-5416 (Su/Pn). Five weeks later, cardiac magnetic resonance imaging was performed in vivo, optical action potential (AP) mapping ex vivo, and molecular analyses in vitro. RESULTS: Su/Pn rats exhibited right ventricular (RV) hypertrophy and were highly prone to pacing-induced ventricular tachycardia/fibrillation (VT/VF). Underlying this susceptibility was disproportionate RV-sided prolongation of AP duration, which promoted formation of right-sided AP alternans at physiological rates. While propagation was impaired at all rates in Su/Pn rats, the extent of conduction slowing was most severe immediately before the emergence of interventricular lines of block and onset of VT/VF. Measurement of the cardiac wavelength revealed a decrease in Su/Pn relative to control. Nav1.5 and total connexin 43 expression was not altered, while connexin 43 phosphorylation was decreased in PAH. Col1a1 and Col3a1 transcripts were upregulated coinciding with myocardial fibrosis. Once generated, VT/VF was sustained by multiple reentrant circuits with a lower frequency of RV activation due to wavebreak formation. CONCLUSION: In this pure model of PAH, we document RV-predominant remodeling that promotes multiwavelet reentry underlying VT. The Su/Pn model represents a severe form of PAH that allows the study of EP properties without the confounding influence of extrapulmonary toxicity.


Assuntos
Arritmias Cardíacas/fisiopatologia , Hipertensão Pulmonar/fisiopatologia , Remodelação Ventricular , Potenciais de Ação , Animais , Modelos Animais de Doenças , Indóis , Imageamento por Ressonância Magnética , Masculino , Pneumonectomia , Pirróis , Ratos , Ratos Sprague-Dawley , Toracotomia
19.
JCI Insight ; 7(8)2022 04 22.
Artigo em Inglês | MEDLINE | ID: mdl-35451373

RESUMO

Metabolic stress is an important cause of pathological atrial remodeling and atrial fibrillation. AMPK is a ubiquitous master metabolic regulator, yet its biological function in the atria is poorly understood in both health and disease. We investigated the impact of atrium-selective cardiac AMPK deletion on electrophysiological and structural remodeling in mice. Loss of atrial AMPK expression caused atrial changes in electrophysiological properties and atrial ectopic activity prior to the onset of spontaneous atrial fibrillation. Concomitant transcriptional downregulation of connexins and atrial ion channel subunits manifested with delayed left atrial activation and repolarization. The early molecular and electrophysiological abnormalities preceded left atrial structural remodeling and interstitial fibrosis. AMPK inactivation induced downregulation of transcription factors (Mef2c and Pitx2c) linked to connexin and ion channel transcriptional reprogramming. Thus, AMPK plays an essential homeostatic role in atria, protecting against adverse remodeling potentially by regulating key transcription factors that control the expression of atrial ion channels and gap junction proteins.


Assuntos
Fibrilação Atrial , Remodelamento Atrial , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Fibrilação Atrial/metabolismo , Conexinas/genética , Conexinas/metabolismo , Canais Iônicos/genética , Canais Iônicos/metabolismo , Camundongos , Miócitos Cardíacos/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
20.
Cells ; 11(19)2022 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-36231013

RESUMO

Arrhythmogenic cardiomyopathy (ACM) is an inherited disorder characterized by fibro-fatty infiltration with an increased propensity for ventricular arrhythmias and sudden death. Genetic variants in desmosomal genes are associated with ACM. Incomplete penetrance is a common feature in ACM families, complicating the understanding of how external stressors contribute towards disease development. To analyze the dual role of genetics and external stressors on ACM progression, we developed one of the first mouse models of ACM that recapitulates a human variant by introducing the murine equivalent of the human R451G variant into endogenous desmoplakin (DspR451G/+). Mice homozygous for this variant displayed embryonic lethality. While DspR451G/+ mice were viable with reduced expression of DSP, no presentable arrhythmogenic or structural phenotypes were identified at baseline. However, increased afterload resulted in reduced cardiac performance, increased chamber dilation, and accelerated progression to heart failure. In addition, following catecholaminergic challenge, DspR451G/+ mice displayed frequent and prolonged arrhythmic events. Finally, aberrant localization of connexin-43 was noted in the DspR451G/+ mice at baseline, becoming more apparent following cardiac stress via pressure overload. In summary, cardiovascular stress is a key trigger for unmasking both electrical and structural phenotypes in one of the first humanized ACM mouse models.


Assuntos
Displasia Arritmogênica Ventricular Direita , Animais , Arritmias Cardíacas/genética , Displasia Arritmogênica Ventricular Direita/genética , Displasia Arritmogênica Ventricular Direita/metabolismo , Desmoplaquinas/genética , Modelos Animais de Doenças , Coração , Humanos , Camundongos , Fenótipo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA