Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Scand J Gastroenterol ; 59(3): 344-351, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38031926

RESUMO

BACKGROUND: Irritable Bowel Syndrome (IBS) is a common gastrointestinal disorder causing abdominal pain, altered bowel habits and bloating without structural issues. Gallbladder dysfunction may be linked to IBS due to disrupted cholecystokinin release. This study aims to assess gallbladder function and related hemodynamic parameters using Doppler ultrasound in IBS before and after meals. METHOD: In this case-control study, we investigated gallbladder function differences between constipation-predominant IBS (C-IBS) patients and healthy volunteers. Participants underwent ultrasonography to measure gallbladder parameters before and after consuming a predefined meal. Gallbladder volume, wall thickness and resistance index (RI) of cystic and superior mesenteric arteries (SMA) were assessed. Student t-test and paired t-test were used to compare case and control groups and pre- and post-meal data, respectively. RESULTS: A total of 34 people (18 C-IBS and 16 healthy control) were included. The mean (Standard deviation) of gallbladder fasting volume was measured 24.74 (8.85) and 29.73 (9.65) cubic millimeter for case and controls, respectively. Postprandial volume was 11.34 (5.66) and 16.9 (6.16) cubic millimeter for case and controls respectively. We observed a statistically significant difference in emptying fractions (EF) between groups (p value = 0.009). IBS patients had a smaller fasting SMA RI (p value = 0.016) but the fraction of change after meal was not significant (p value = 0.10). The cystic artery RI did not reach statistical significance between the fasting and post-meal values (p value = 0.067). CONCLUSION: IBS patients have a higher emptying fraction and lower change in SMA RI compared to healthy controls. Further studies with larger sample size, inclusion of patients with different coexisting conditions and subtypes of IBS and combining colon transit study with gallbladder ejection fraction evaluation can be used to further provide more meaning to this study.


Assuntos
Vesícula Biliar , Síndrome do Intestino Irritável , Humanos , Dor Abdominal/etiologia , Estudos de Casos e Controles , Vesícula Biliar/diagnóstico por imagem , Síndrome do Intestino Irritável/complicações , Síndrome do Intestino Irritável/diagnóstico por imagem , Ultrassonografia Doppler/métodos
2.
Bioorg Med Chem Lett ; 27(4): 1050-1054, 2017 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-28110869

RESUMO

The pore-forming protein perforin is a key component of mammalian cell-mediated immunity and essential to the pathway that allows elimination of virus-infected and transformed cells. Perforin activity has also been implicated in certain auto-immune conditions and therapy-induced conditions such as allograft rejection and graft versus host disease. An inhibitor of perforin activity could be used as a highly specific immunosuppressive treatment for these conditions, with reduced side-effects compared to currently accepted therapies. Previously identified first-in-class inhibitors based on a 2-thioxoimidazolidin-4-one core show suboptimal physicochemical properties and toxicity toward the natural killer (NK) cells that secrete perforin in vivo. The current benzenesulphonamide-based series delivers a non-toxic bioisosteric replacement possessing improved solubility.


Assuntos
Imunossupressores/farmacologia , Perforina/antagonistas & inibidores , Sulfonamidas/farmacologia , Linhagem Celular Tumoral , Humanos , Imunossupressores/química , Células Matadoras Naturais/efeitos dos fármacos , Células Matadoras Naturais/imunologia , Solubilidade , Relação Estrutura-Atividade , Sulfonamidas/química , Benzenossulfonamidas
3.
Eur J Med Chem ; 261: 115786, 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-37716187

RESUMO

Perforin is a pore-forming protein whose normal function enables cytotoxic T and natural killer (NK) cells to kill virus-infected and transformed cells. Conversely, unwanted perforin activity can also result in auto-immune attack, graft rejection and aberrant responses to pathogens. Perforin is critical for the function of the granule exocytosis cell death pathway and is therefore a target for drug development. In this study, by screening a fragment library using NMR and surface plasmon resonance, we identified 4,4-diaminodiphenyl sulfone (dapsone) as a perforin ligand. We also found that dapsone has modest (mM) inhibitory activity of perforin lytic activity in a red blood cell lysis assay in vitro. Sequential modification of this lead fragment, guided by structural knowledge of the ligand binding site and binding pose, and supported by SPR and ligand-detected 19F NMR, enabled the design of nanomolar inhibitors of the cytolytic activity of intact NK cells against various tumour cell targets. Interestingly, the ligands we developed were largely inert with respect to direct perforin-mediated red blood cell lysis but were very potent in the context of perforin's action on delivering granzymes in the immune synapse, the context in which it functions physiologically. Our work indicates that a fragment-based, structure-guided drug discovery strategy can be used to identify novel ligands that bind perforin. Moreover, these molecules have superior physicochemical properties and solubility compared to previous generations of perforin ligands.


Assuntos
Dapsona , Células Matadoras Naturais , Perforina/metabolismo , Ligantes , Células Matadoras Naturais/metabolismo , Morte Celular , Dapsona/metabolismo
4.
J Med Chem ; 65(21): 14305-14325, 2022 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-36263926

RESUMO

New drugs that precisely target the immune mechanisms critical for cytotoxic T lymphocyte (CTL) and natural killer (NK) cell driven pathologies are desperately needed. In this perspective, we explore the cytolytic protein perforin as a target for therapeutic intervention. Perforin plays an indispensable role in CTL/NK killing and controls a range of immune pathologies, while being encoded by a single copy gene with no redundancy of function. An immunosuppressant targeting this protein would provide the first-ever therapy focused specifically on one of the principal cell death pathways contributing to allotransplant rejection and underpinning multiple autoimmune and postinfectious diseases. No drugs that selectively block perforin-dependent cell death are currently in clinical use, so this perspective will review published novel small molecule inhibitors, concluding with in vivo proof-of-concept experiments performed in mouse models of perforin-mediated immune pathologies that provide a potential pathway toward a clinically useful therapeutic agent.


Assuntos
Autoimunidade , Citotoxicidade Imunológica , Camundongos , Animais , Perforina , Imunossupressores/farmacologia , Imunossupressores/uso terapêutico , Imunossupressores/metabolismo , Proteínas Citotóxicas Formadoras de Poros , Glicoproteínas de Membrana/metabolismo , Linfócitos T Citotóxicos
5.
ACS Pharmacol Transl Sci ; 5(6): 429-439, 2022 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-35711815

RESUMO

Perforin is a key effector of lymphocyte-mediated cell death pathways and contributes to transplant rejection of immunologically mismatched grafts. We have developed a novel series of benzenesulfonamide (BZS) inhibitors of perforin that can mitigate graft rejection during allogeneic bone marrow/stem cell transplantation. Eight such perforin inhibitors were tested for their murine pharmacokinetics, plasma protein binding, and their ability to block perforin-mediated lysis in vitro and to block the rejection of major histocompatibility complex (MHC)-mismatched mouse bone marrow cells. All compounds showed >99% binding to plasma proteins and demonstrated perforin inhibitory activity in vitro and in vivo. A lead compound, compound 1, that showed significant increases in allogeneic bone marrow preservation was evaluated for its plasma pharmacokinetics and in vivo efficacy at multiple dosing regimens to establish a pharmacokinetic/pharmacodynamic (PK/PD) relationship. The strongest PK/PD correlation was observed between perforin inhibition in vivo and time that total plasma concentrations remained above 900 µM, which correlates to unbound concentrations similar to 3× the unbound in vitro IC90 of compound 1. This PK/PD relationship will inform future dosing strategies of BZS perforin inhibitors to maintain concentrations above 3× the unbound IC90 for as long as possible to maximize efficacy and enhance progression toward clinical evaluation.

6.
J Med Chem ; 63(5): 2229-2239, 2020 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-31525966

RESUMO

Perforin is a key effector protein in the vertebrate immune system and is secreted by cytotoxic T lymphocytes and natural killer cells to help eliminate virus-infected and transformed target cells. The ability to modulate perforin activity in vivo could be extremely useful, especially in the context of bone marrow stem cell transplantation where early rejection of immunologically mismatched grafts is driven by the recipient's natural killer cells, which overwhelmingly use perforin to kill their targets. Bone marrow stem cell transplantation is a potentially curative treatment for both malignant and nonmalignant disorders, but when the body recognizes the graft as foreign, it is rejected by this process, often with fatal consequences. Here we report optimization of a previously identified series of benzenesulfonamide-based perforin inhibitors for their physicochemical and pharmacokinetic properties, resulting in the identification of 16, the first reported small molecule able to prevent rejection of transplanted bone marrow stem cells in vivo by blocking perforin function.


Assuntos
Transplante de Medula Óssea , Rejeição de Enxerto/prevenção & controle , Perforina/antagonistas & inibidores , Transplante de Células-Tronco , Sulfonamidas/uso terapêutico , Animais , Linhagem Celular , Rejeição de Enxerto/imunologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Perforina/imunologia , Sulfonamidas/química , Sulfonamidas/farmacocinética , Benzenossulfonamidas
7.
Front Immunol ; 9: 529, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29599780

RESUMO

The ability of cytotoxic lymphocytes (CL) to eliminate virus-infected or cancerous target cells through the granule exocytosis death pathway is critical to immune homeostasis. Congenital loss of CL function due to bi-allelic mutations in PRF1, UNC13D, STX11, or STXBP2 leads to a potentially fatal immune dysregulation, familial haemophagocytic lymphohistiocytosis (FHL). This occurs due to the failure of CLs to release functional pore-forming protein perforin and, therefore, inability to kill the target cell. Bi-allelic mutations in partner proteins STXBP2 or STX11 impair CL cytotoxicity due to failed docking/fusion of cytotoxic secretory granules with the plasma membrane. One unique feature of STXBP2- and STX11-deficient patient CLs is that their short-term in vitro treatment with a low concentration of IL-2 partially or completely restores natural killer (NK) cell degranulation and cytotoxicity, suggesting the existence of a secondary, yet unknown, pathway for secretory granule exocytosis. In the current report, we studied NK and T-cell function in an individual with late presentation of FHL due to hypomorphic bi-allelic mutations in STXBP2. Intriguingly, in addition to the expected alterations in the STXBP2 and STX11 proteins, we also observed a concomitant significant reduction in the expression of homologous STXBP1 protein and its partner STX1, which had never been implicated in CL function. Further analysis of human NK and T cells demonstrated a functional role for the STXBP1/STX1 axis in NK and CD8+ T-cell cytotoxicity, where it appears to be responsible for as much as 50% of their cytotoxic activity. This discovery suggests a unique and previously unappreciated interplay between STXBP/Munc proteins regulating the same essential granule exocytosis pathway.


Assuntos
Proteínas Munc18/genética , Proteínas Munc18/imunologia , Linfócitos T Citotóxicos/imunologia , Alelos , Linhagem Celular , Citotoxicidade Imunológica , Feminino , Humanos , Células Matadoras Naturais/imunologia , Leucócitos Mononucleares/imunologia , Pessoa de Meia-Idade , Mutação
8.
Eur J Med Chem ; 137: 139-155, 2017 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-28582670

RESUMO

The structure-activity relationships for a series of arylsulphonamide-based inhibitors of the pore-forming protein perforin have been explored. Perforin is a key component of the human immune response, however inappropriate activity has also been implicated in certain auto-immune and therapy-induced conditions such as allograft rejection and graft versus host disease. Since perforin is expressed exclusively by cells of the immune system, inhibition of this protein would be a highly selective strategy for the immunosuppressive treatment of these disorders. Compounds from this series were demonstrated to be potent inhibitors of the lytic action of both isolated recombinant perforin and perforin secreted by natural killer cells in vitro. Several potent and soluble examples were assessed for in vivo pharmacokinetic properties and found to be suitable for progression to an in vivo model of transplant rejection.


Assuntos
Perforina/antagonistas & inibidores , Sulfonamidas/farmacologia , Relação Dose-Resposta a Droga , Humanos , Células Jurkat/efeitos dos fármacos , Células Jurkat/metabolismo , Células Matadoras Naturais/efeitos dos fármacos , Células Matadoras Naturais/metabolismo , Estrutura Molecular , Perforina/metabolismo , Relação Estrutura-Atividade , Sulfonamidas/síntese química , Sulfonamidas/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA