Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Infect Immun ; 89(4)2021 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-33397818

RESUMO

Streptococcus pneumoniae grows in biofilms during both asymptomatic colonization and infection. Pneumococcal biofilms on abiotic surfaces exhibit delayed growth and lower biomass and lack the structures seen on epithelial cells or during nasopharyngeal carriage. We show here that adding hemoglobin to the medium activated unusually early and vigorous biofilm growth in multiple S. pneumoniae serotypes grown in batch cultures on abiotic surfaces. Human blood (but not serum, heme, or iron) also stimulated biofilms, and the pore-forming pneumolysin, ply, was required for this induction. S. pneumoniae transitioning from planktonic into sessile growth in the presence of hemoglobin displayed an extensive transcriptome remodeling within 1 and 2 h. Differentially expressed genes included those involved in the metabolism of carbohydrates, nucleotides, amino acid, and lipids. The switch into adherent states also influenced the expression of several regulatory systems, including the comCDE genes. Inactivation of comC resulted in 67% reduction in biofilm formation, while the deletion of comD or comE had limited or no effect, respectively. These observations suggest a novel route for CSP-1 signaling independent of the cognate ComDE two-component system. Biofilm induction and the associated transcriptome remodeling suggest hemoglobin serves as a signal for host colonization in pneumococcus.


Assuntos
Proteínas de Bactérias/metabolismo , Biofilmes/crescimento & desenvolvimento , Hemoglobinas/metabolismo , Interações Hospedeiro-Patógeno , Infecções Pneumocócicas/microbiologia , Streptococcus pneumoniae/fisiologia , Células Sanguíneas/metabolismo , Humanos , Infecções Pneumocócicas/sangue , Infecções Pneumocócicas/metabolismo , Streptococcus pneumoniae/patogenicidade
2.
Pathogens ; 12(5)2023 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-37242402

RESUMO

New pneumococcal conjugate vaccines (PCVs), 15- and 20-valent (PCV15 and PCV20), have been licensed for use among U.S. adults based on safety and immunogenicity data compared with the previously recommended 13-valent PCV (PCV13) and 23-valent pneumococcal polysaccharide vaccines (PPSV23). We conducted a systematic review of the literature on PCV13 and PPSV23 efficacy (randomized controlled trials [RCTs]) or effectiveness (observational studies) against vaccine type (PCV13 type or PPSV23 type, respectively), invasive pneumococcal disease (IPD), and pneumococcal pneumonia (PP) in adults. We utilized the search strategy from a previous systematic review of the literature published during the period from January 2016 to April 2019, and updated the search through March 2022. The certainty of evidence was assessed using the Cochrane risk-of-bias 2.0 tool and the Newcastle-Ottawa scale. When feasible, meta-analyses were conducted. Of the 5085 titles identified, 19 studies were included. One RCT reported PCV13 efficacy of 75% (PCV13-type IPD) and 45% (PCV13-type PP). Three studies each reported PCV13 effectiveness against PCV13-type IPD (range 47% to 68%) and against PCV13-type PP (range 38% to 68%). The pooled PPSV23 effectiveness was 45% (95% CI: 37%, 51%) against PPSV23-type IPD (nine studies) and 18% (95% CI: -4%, 35%) against PPSV23-type PP (five studies). Despite the heterogeneity across studies, our findings suggest that PCV13 and PPSV23 protect against VT-IPD and VT-PP in adults.

3.
Sci Rep ; 10(1): 15202, 2020 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-32938947

RESUMO

Streptococcus pneumoniae (Spn) must acquire iron from the host to establish infection. We examined the impact of hemoglobin, the largest iron reservoir in the body, on pneumococcal physiology. Supplementation with hemoglobin allowed Spn to resume growth in an iron-deplete medium. Pneumococcal growth with hemoglobin was unusually robust, exhibiting a prolonged logarithmic growth, higher biomass, and extended viability in both iron-deplete and standard medium. We observed the hemoglobin-dependent response in multiple serotypes, but not with other host proteins, free iron, or heme. Remarkably, hemoglobin induced a sizable transcriptome remodeling, effecting virulence and metabolism in particular genes facilitating host glycoconjugates use. Accordingly, Spn was more adapted to grow on the human α - 1 acid glycoprotein as a sugar source with hemoglobin. A mutant in the hemoglobin/heme-binding protein Spbhp-37 was impaired for growth on heme and hemoglobin iron. The mutant exhibited reduced growth and iron content when grown in THYB and hemoglobin. In summary, the data show that hemoglobin is highly beneficial for Spn cultivation in vitro and suggest that hemoglobin might drive the pathogen adaptation in vivo. The hemoglobin receptor, Spbhp-37, plays a role in mediating the positive influence of hemoglobin. These novel findings provide intriguing insights into pneumococcal interactions with its obligate human host.


Assuntos
Proteínas de Bactérias/genética , Perfilação da Expressão Gênica/métodos , Hemoglobinas/farmacologia , Streptococcus pneumoniae/crescimento & desenvolvimento , Técnicas de Cultura Celular por Lotes , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Viabilidade Microbiana/efeitos dos fármacos , Mutação , Orosomucoide/farmacologia , Streptococcus pneumoniae/efeitos dos fármacos , Streptococcus pneumoniae/genética
4.
Artigo em Inglês | MEDLINE | ID: mdl-25414836

RESUMO

The massive erythrocyte lysis caused by the Group A Streptococcus (GAS) suggests that the ß-hemolytic pathogen is likely to encounter free heme during the course of infection. In this study, we investigated GAS mechanisms for heme sensing and tolerance. We compared the minimal inhibitory concentration of heme among several isolates and established that excess heme is bacteriostatic and exposure to sub-lethal concentrations of heme resulted in noticeable damage to membrane lipids and proteins. Pre-exposure of the bacteria to 0.1 µM heme shortened the extended lag period that is otherwise observed when naive cells are inoculated into heme-containing medium, implying that GAS is able to adapt. The global response to heme exposure was determined using microarray analysis revealing a significant transcriptome shift that included 79 up regulated and 84 down regulated genes. Among other changes, the induction of stress-related chaperones and proteases, including groEL/ES (8x), the stress regulators spxA2 (5x) and ctsR (3x), as well as redox active enzymes were prominent. The heme stimulon also encompassed a number of regulatory proteins and two-component systems that are important for virulence. A three-gene cluster that is homologous to the pefRCD system of the Group B Streptococcus was also induced by heme. PefR, a MarR-like regulator, specifically binds heme with stoichiometry of 1:2 and protoporphyrin IX (PPIX) with stoichiometry of 1:1, implicating it is one of the GAS mediators to heme response. In summary, here we provide evidence that heme induces a broad stress response in GAS, and that its success as a pathogen relies on mechanisms for heme sensing, detoxification, and repair.


Assuntos
Heme/análogos & derivados , Infecções Estreptocócicas/metabolismo , Infecções Estreptocócicas/microbiologia , Streptococcus pyogenes/fisiologia , Adaptação Fisiológica , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Toxinas Bacterianas/metabolismo , Membrana Eritrocítica/efeitos dos fármacos , Membrana Eritrocítica/metabolismo , Loci Gênicos , Heme/metabolismo , Heme/farmacologia , Heme/toxicidade , Proteínas Hemolisinas/metabolismo , Hemólise , Peroxidação de Lipídeos/efeitos dos fármacos , Proteínas de Membrana/metabolismo , Fenótipo , Ligação Proteica , Protoporfirinas/metabolismo , Esfingomielina Fosfodiesterase/metabolismo , Streptococcus pyogenes/efeitos dos fármacos , Streptococcus pyogenes/crescimento & desenvolvimento , Estresse Fisiológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA