Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
J Periodontal Res ; 59(3): 512-520, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38243688

RESUMO

BACKGROUND: Periodontitis is a chronic inflammatory disease defined by the pathologic loss of the periodontal ligament and alveolar bone in relation to aging. Although clinical cohort studies reported that periodontitis is significantly elevated in males compared to females, emerging evidence indicates that females with dementia are at a greater risk for periodontitis and decreased alveolar bone. OBJECTIVE: This study aimed to evaluate whether dementia is a potential sex-dependent risk factor for periodontal bone loss using an experimental model of periodontitis induced in the triple transgenic (3x-Tg) dementia-like mice and clinical samples collected from senior 65 plus age patients with diagnosed dementia. MATERIALS AND METHODS: We induced periodontitis in dementia-like triple-transgenic (3x-Tg) male and female mice and age-matched wild-type (WT) control mice by ligature placement. Then, alveolar bone loss and osteoclast activity were evaluated using micro-CT and in situ imaging assays. In addition, we performed dental examinations on patients with diagnosed dementia. Finally, dementia-associated Aß42 and p-Tau (T181) and osteoclastogenic receptor activator of nuclear factor kappa-Β ligand (RANKL) in gingival crevicular fluid (GCF) collected from mice and clinical samples were measured by enzyme-linked immunosorbent assay (ELISA). RESULTS: Alveolar bone loss and in situ osteoclast activity were significantly elevated in periodontal lesions of 3x-Tg females but not males, compared to wild-type control mice. In addition, we also observed that the probing pocket depth (PPD) was also significantly elevated in female patients with dementia. Using ELISA assay, we observed that females had elevated levels of osteoclastogenic RANKL and dementia-associated Aß42 and p-Tau (T181) in the GCF collected from experimental periodontitis lesions and clinical samples. CONCLUSION: Altogether, we demonstrate that females with dementia have an increased risk for periodontal bone loss compared to males.


Assuntos
Perda do Osso Alveolar , Demência , Modelos Animais de Doenças , Camundongos Transgênicos , Periodontite , Ligante RANK , Animais , Feminino , Perda do Osso Alveolar/patologia , Perda do Osso Alveolar/diagnóstico por imagem , Perda do Osso Alveolar/metabolismo , Masculino , Camundongos , Demência/etiologia , Humanos , Idoso , Ligante RANK/análise , Ligante RANK/metabolismo , Fatores Sexuais , Periodontite/complicações , Periodontite/patologia , Microtomografia por Raio-X , Osteoclastos/patologia , Peptídeos beta-Amiloides/metabolismo , Líquido do Sulco Gengival/química , Fragmentos de Peptídeos/análise , Fatores de Risco
2.
J Cell Mol Med ; 26(10): 2841-2851, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35429112

RESUMO

Emerging studies indicate that intracellular eukaryotic ceramide species directly activate cathepsin B (CatB), a lysosomal-cysteine-protease, in the cytoplasm of osteoclast precursors (OCPs) leading to elevated RANKL-mediated osteoclastogenesis and inflammatory osteolysis. However, the possible impact of CatB on osteoclastogenesis elevated by non-eukaryotic ceramides is largely unknown. It was reported that a novel class of phosphoglycerol dihydroceramide (PGDHC), produced by the key periodontal pathogen Porphyromonas gingivalis upregulated RANKL-mediated osteoclastogenesis in vitro and in vivo. Therefore, the aim of this study was to evaluate a crosstalk between host CatB and non-eukaryotic PGDHC on the promotion of osteoclastogenesis. According to a pulldown assay, high affinity between PGDHC and CatB was observed in RANKL-stimulated RAW264.7 cells in vitro. It was also demonstrated that PGDHC promotes enzymatic activity of recombinant CatB protein ex vivo and in RANKL-stimulated osteoclast precursors in vitro. Furthermore, no or little effect of PGDHC on the RANKL-primed osteoclastogenesis was observed in male and female CatB-knock out mice compared with their wild type counterparts. Altogether, these findings demonstrate that bacterial dihydroceramides produced by P. gingivalis elevate RANKL-primed osteoclastogenesis via direct activation of intracellular CatB in OCPs.


Assuntos
Osteogênese , Porphyromonas gingivalis , Animais , Catepsina B/metabolismo , Diferenciação Celular , Ceramidas/metabolismo , Feminino , Lisossomos/metabolismo , Masculino , Camundongos , Osteoclastos/metabolismo , Osteogênese/genética , Ligante RANK/metabolismo , Ligante RANK/farmacologia
3.
Biochem Biophys Res Commun ; 546: 97-102, 2021 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-33578295

RESUMO

The SARS-CoV-2 virus causes elevated production of senescence-associated secretory phenotype (SASP) markers by macrophages. SARS-CoV-2 enters macrophages through its Spike-protein aided by cathepsin (Cat) B and L, which also mediate SASP production. Since M-CSF and IL-34 control macrophage differentiation, we investigated the age-dependent effects of the Spike-protein on SASP-related pro-inflammatory-cytokines and nuclear-senescence-regulatory-factors, and CatB, L and K, in mouse M-CSF- and IL-34-differentiated macrophages. The Spike-protein upregulated SASP expression in young and aged male M-CSF-macrophages. In contrast, only young and aged male IL-34-macrophages demonstrated significantly reduced pro-inflammatory cytokine expression in response to the Spike-protein in vitro. Furthermore, the S-protein elevated CatB expression in young male M-CSF-macrophages and young female IL-34-macrophages, whereas CatL was overexpressed in young male IL-34- and old male M-CSF-macrophages. Surprisingly, the S-protein increased CatK activity in young and aged male M-CSF-macrophages, indicating that CatK may be also involved in the COVID-19 pathology. Altogether, we demonstrated the age- and sex-dependent effects of the Spike-protein on M-CSF and IL-34-macrophages using a novel in vitro mouse model of SARS-CoV-2/COVID-19.


Assuntos
Fatores Etários , Macrófagos/virologia , Glicoproteína da Espícula de Coronavírus/farmacologia , Animais , Catepsinas/metabolismo , Diferenciação Celular , Senescência Celular , Citocinas/metabolismo , Feminino , Interleucinas , Fator Estimulador de Colônias de Macrófagos , Macrófagos/citologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Recombinantes/farmacologia , SARS-CoV-2 , Fatores Sexuais
4.
Front Mol Neurosci ; 17: 1365752, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38476461

RESUMO

The leucine-rich repeat-containing protein 25 (LRRC25) is relatively a novel protein with no information on its role in neuronal or brain function. A recent study suggested LRRC25 is a potential risk factor for Alzheimer's disease (AD). As a first step to understanding LRRC25's role in the brain and AD, we found LRRC25 is expressed in both cell membranes and cytoplasm in a punctuate appearance in astrocytes, microglia, and neurons in cell lines as well as mouse brain. We also found that LRRC25 expression is both age- and brain region-dependent and that 1-day-old (1D) pups expressed the least amount of LRRC25 protein compared to adult ages. In the APΔE9 mice, immunoblot quantified LRRC25 protein levels were increased by 166% (**p < 0.01) in the cortex (CX) and by 215% (***p < 0.001) in the hippocampus (HP) relative to wild-type (WT) controls. Both the brainstem (BS) and cerebellum (CB) showed no significant alterations. In the 3xTg mice, only CX showed an increase of LRRC25 protein by 91% (*p < 0.05) when compared to WT controls although the increased trend was noted in the other brain regions. In the AD patient brains also LRRC25 protein levels were increased by 153% (***p < 0.001) when compared to normal control (NC) subjects. Finally, LRRC25 expression in the iPSC-derived neurons quantified by immunofluorescence was increased by 181% (**p < 0.01) in AD-derived neurons when compared to NC-derived neurons. Thus increased LRRC25 protein in multiple models of AD suggests that LRRC25 may play a pathogenic role in either Aß or tau pathology in AD. The mechanism for the increased levels of LRRC25 in AD is unknown at present, but a previous study showed that LRRC25 levels also increase during neonatal hypoxic-ischemia neuronal damage. Based on the evidence that autophagy is highly dysregulated in AD, the increased LRRC25 levels may be due to decreased autophagic degradation of LRRC25. Increased LRRC25 in turn may regulate the stability or activity of key enzymes involved in either Aß or hyperphosphorylated tau generation and thus may contribute to increased plaques and neurofibrillary tangles.

5.
Mol Oral Microbiol ; 2023 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-37902168

RESUMO

Macrophage colony-stimulating factor (M-CSF) and interleukin-34 (IL-34) are ligands for the colony-stimulating factor-1  receptor (CSF-1r) expressed on the surface of monocyte/macrophage lineage cells. The importance of coordinated signaling between M-CSF/receptor activator of the nuclear factor kappa-Β ligand (RANKL) in physiological and pathological bone remodeling and alveolar bone loss in response to oral bacterial colonization is well established. However, our knowledge about the IL-34/RANKL signaling in periodontal bone loss remains limited. Recently published cohort studies have demonstrated that the expression patterns of IL-34 are dramatically elevated in gingival crevicular fluid collected from patients with periodontitis. Therefore, the present study aims to evaluate the effects of IL-34 on osteoclastogenesis in vitro and in experimental ligature-mediated model of periodontitis using male mice. Our initial in vitro study demonstrated increased RANKL-induced osteoclastogenesis of IL-34-primed osteoclast precursors (OCPs) compared to M-CSF-primed OCPs. Using an experimental model of ligature-mediated periodontitis, we further demonstrated elevated expression of IL-34 in periodontal lesions. In contrast, M-CSF levels were dramatically reduced in these periodontal lesions. Furthermore, local injections of mouse recombinant IL-34 protein significantly elevated cathepsin K activity, increased the number of tartrate-resistant acid phosphatase (TRAP)-positive osteoclasts and promoted alveolar bone loss in periodontitis lesions. In contrast, anti-IL-34 neutralizing monoclonal antibody significantly reduced the level of alveolar bone loss and the number of TRAP-positive osteoclasts in periodontitis lesions. No beneficial effects of locally injected anti-M-CSF neutralizing antibody were observed in periodontal lesions. This study illustrates the role of IL-34 in promoting alveolar bone loss in periodontal lesions and proposes the potential of anti-IL34 monoclonal antibody (mAb)-based therapeutic regimens to suppress alveolar bone loss in periodontitis lesions.

6.
Biomed Pharmacother ; 166: 115435, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37666180

RESUMO

Hallmark features of Alzheimer's disease (AD) include elevated accumulation of aggregated Aß40 and Aß42 peptides, hyperphosphorylated Tau (p-Tau), and neuroinflammation. Emerging evidence indicated that interleukin-34 (IL-34) contributes to AD and inflammatory osteolysis via the colony-stimulating factor-1 receptor (CSF-1r). In addition, CSF-1r is also activated by macrophage colony-stimulating factor-1 (M-CSF). While the role of M-CSF in bone physiology and pathology is well addressed, it remains controversial whether IL-34-mediated signaling promotes osteolysis, neurodegeneration, and neuroinflammation in relation to AD. In this study, we injected 3x-Tg mice with mouse recombinant IL-34 protein over the calvaria bone every other day for 42 days. Then, behavioral changes, brain pathology, and calvaria osteolysis were evaluated using various behavioral maze and histological assays. We demonstrated that IL-34 administration dramatically elevated AD-like anxiety and memory loss, pathogenic amyloidogenesis, p-Tau, and RAGE expression in female 3x-Tg mice. Furthermore, IL-34 delivery promoted calvaria inflammatory osteolysis compared to the control group. In addition, we also compared the effects of IL-34 and M-CSF on macrophages, microglia, and RANKL-mediated osteoclastogenesis in relation to AD pathology in vitro. We observed that IL-34-exposed SIM-A9 microglia and 3x-Tg bone marrow-derived macrophages released significantly elevated amounts of pro-inflammatory cytokines, TNF-α, IL-1ß, and IL-6, compared to M-CSF treatment in vitro. Furthermore, IL-34, but not M-CSF, elevated RANKL-primed osteoclastogenesis in the presence of Aß40 and Aß42 peptides in bone marrow derived macrophages isolated from female 3x-Tg mice. Collectively, our data indicated that IL-34 elevates AD-like features, including behavioral changes and neuroinflammation, as well as osteoclastogenesis in female 3x-Tg mice.


Assuntos
Doença de Alzheimer , Interleucinas , Osteólise , Animais , Feminino , Camundongos , Doença de Alzheimer/metabolismo , Animais Geneticamente Modificados , Doenças Neuroinflamatórias , Osteólise/metabolismo , Crânio
7.
Biology (Basel) ; 12(9)2023 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-37759666

RESUMO

SARS-CoV-2, the virus that causes COVID-19, is prone to mutations and the generation of genetic variants. Since its first outbreak in 2019, SARS-CoV-2 has continually evolved, resulting in the emergence of several lineages and variants of concern (VOC) that have gained more efficient transmission, severity, and immune evasion properties. The World Health Organization has given these variants names according to the letters of the Greek Alphabet, starting with the Alpha (B.1.1.7) variant, which emerged in 2020, followed by the Beta (B.1.351), Gamma (P.1), Delta (B.1.617.2), and Omicron (B.1.1.529) variants. This review explores the genetic variation among different VOCs of SARS-CoV-2 and how the emergence of variants made a global impact on the pandemic.

8.
Biomed Pharmacother ; 138: 111503, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33770668

RESUMO

Although periprosthetic osteolysis induced by wear debris particles is significantly elevated in senior (65+ years old) patients, most of the published pre-clinical studies were performed using young (less than three-month old) mice indicating the critical need to employ experimental models of particle-induced osteolysis involving mice with advanced age. Emerging evidence indicates that currently available antiresorptive bone therapies have serious age-dependent side effects. However, a resurgence of healthcare interest has occurred in glycyrrhizin (GLY), a natural extract from the licorice roots, as alternative sources of drugs for treating inflammatory bone lytic diseases and prevention of cellular senescence. This study investigated the effects of GLY on inflammatory bone loss as well as expression patterns of senescence-associated secretory phenotype and senescence-protective markers using an experimental calvarium osteolytic model induced in aged (twenty-four-month-old) mice by polymethylmethacrylate (PMMA) particles. Our results indicate that local treatment with GLY significantly diminished the size of inflammatory osteolytic lesions in aged mice via the number of CXCR4+OCPs and Tartrate-resistant acid phosphatase positive (TRAP+) osteoclasts. Furthermore, GLY dramatically decreased the amounts of senescence-associated secretory phenotype markers, including pro-inflammatory macrophage migration inhibitory factor (MIF) chemokine, and cathepsins B and K in the bone lesions of aged mice. By contrast, GLY significantly elevated expression patterns of senescence-protective markers, including homeostatic stromal derived factor-1 (SDF-1) chemokine, and sirtuin-1, and sirtuin-6, in the PMMA particle-induced calvarial lesions of aged mice. Collectively, these data suggest that GLY can be used for the development of novel therapies to control bone loss and tissue aging in senior patients with periprosthetic osteolysis.


Assuntos
Envelhecimento/efeitos dos fármacos , Modelos Animais de Doenças , Ácido Glicirrízico/uso terapêutico , Osteólise/tratamento farmacológico , Osteoporose/tratamento farmacológico , Sirtuínas/biossíntese , Envelhecimento/metabolismo , Envelhecimento/patologia , Animais , Células Cultivadas , Relação Dose-Resposta a Droga , Expressão Gênica , Ácido Glicirrízico/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Osteólise/metabolismo , Osteólise/patologia , Osteoporose/metabolismo , Osteoporose/patologia , Sirtuínas/genética , Crânio/efeitos dos fármacos , Crânio/metabolismo , Crânio/patologia
9.
Geroscience ; 43(1): 367-376, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32851571

RESUMO

Aging is associated with increased prevalence and severity of pathogenic outcomes of periodontal disease, including soft tissue degeneration and bone loss around the teeth. Although lipopolysaccharide (LPS) derived from the key periodontal pathogen Porphyromonas gingivalis (Pg) plays an important role in the promotion of inflammation and osteoclastogenesis via toll-like receptor (TLR)4 signaling, its pathophysiological role in age-associated periodontitis remains unclear. This study investigated the possible effects of Pg-LPS on RANKL-primed osteoclastogenesis and ligature-induced periodontitis in relation to aging using young (2 months old) and aged (24 months old) mice. To the best of our knowledge, our results indicated that expression of TLR4 was significantly diminished on the surface of osteoclast precursors isolated from aged mice compared with that of young mice. Furthermore, our data demonstrated that the TLR4 antagonist (TAK242) dramatically decreased the numbers of tartrate-resistant acid phosphatase positive (TRAP+) osteoclasts differentiated from RANKL-primed young osteoclast precursors (OCPs) compared with those isolated from aged mice in response to Pg-LPS. In addition, using a ligature-induced periodontitis mouse model, we demonstrated that Pg-LPS elevated (1) secretion of senescence-associated secretory phenotype (SASP) markers, including the pro-inflammatory cytokines TNF-α, IL-6, and IL-1ß, as well as osteoclastogenic RANKL, and (2) the number of OCPs and TRAP+ osteoclasts in the periodontal lesion induced in young mice. In contrast, Pg-LPS had little, or no, effect on the promotion of periodontitis inflammation induced in aged mice. Altogether, these results indicated that periodontal disease in older mice occurs in a manner independent of canonical signaling elicited by the Pg-LPS/TLR4 axis.


Assuntos
Periodontite , Porphyromonas gingivalis , Envelhecimento , Animais , Lipopolissacarídeos , Camundongos , Osteoclastos
10.
Cells ; 9(6)2020 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-32498325

RESUMO

Ceramide and sphingosine are important interconvertible sphingolipid metabolites which govern various signaling pathways related to different aspects of cell survival and senescence. The conversion of ceramide into sphingosine is mediated by ceramidases. Altogether, five human ceramidases-named acid ceramidase, neutral ceramidase, alkaline ceramidase 1, alkaline ceramidase 2, and alkaline ceramidase 3-have been identified as having maximal activities in acidic, neutral, and alkaline environments, respectively. All five ceramidases have received increased attention for their implications in various diseases, including cancer, Alzheimer's disease, and Farber disease. Furthermore, the potential anti-inflammatory and anti-apoptotic effects of ceramidases in host cells exposed to pathogenic bacteria and viruses have also been demonstrated. While ceramidases have been a subject of study in recent decades, our knowledge of their pathophysiology remains limited. Thus, this review provides a critical evaluation and interpretive analysis of existing literature on the role of acid, neutral, and alkaline ceramidases in relation to human health and various diseases, including cancer, neurodegenerative diseases, and infectious diseases. In addition, the essential impact of ceramidases on tissue regeneration, as well as their usefulness in enzyme replacement therapy, is also discussed.


Assuntos
Ceramidases/metabolismo , Saúde , Regeneração/fisiologia , Ceramidases/genética , Ceramidas/metabolismo , Doenças Genéticas Inatas/enzimologia , Humanos , Mutação/genética
11.
Front Immunol ; 11: 591571, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33329577

RESUMO

Background: Among different types of sphingolipids produced by human cells, the possible engagement of ceramide species in the pathogenesis of Alzheimer's disease (AD) has attracted recent attention. While ceramides are primarily generated by de novo synthesis in mammalian cells, only a limited number of bacterial species, produce ceramides, including phosphoglycerol dihydroceramide (PGDHC) that is produced by the key periodontal pathogen Porphyromonas gingivalis. Emerging evidence indicates that virulence factors produced by P. gingivalis, such as lipopolysaccharide and gingipain, may be engaged in the initiation and/or progression of AD. However, the potential role of PGDHC in the pathogenesis of AD remains unknown. Therefore, the aim of this study was to evaluate the influence of PGDHC on hallmark findings in AD. Material and Methods: CHO-7WD10 and SH-SY-5Y cells were exposed to PGDHC and lipopolysaccharide (LPS) isolated from P. gingivalis. Soluble Aß42 peptide, amyloid precursor protein (APP), phosphorylated tau and senescence-associated secretory phenotype (SASP) factors were quantified using ELISA and Western blot assays. Results: Our results indicate that P. gingivalis (Pg)-derived PGDHC, but not Pg-LPS, upregulated secretion of soluble Aß42 peptide and expression of APP in CHO-7WD10 cells. Furthermore, hyperphosphorylation of tau protein was observed in SH-SY-5Y cells in response to PGDHC lipid. In contrast, Pg-LPS had little, or no significant effect on the tau phosphorylation induced in SH-SY-5Y cells. However, both PGDHC and Pg-LPS contributed to the senescence of SH-SY5Y cells as indicated by the production of senescence-associated secretory phenotype (SASP) markers, including beta-galactosidase, cathepsin B (CtsB), and pro-inflammatory cytokines TNF-α, and IL-6. Additionally, PGDHC diminished expression of the senescence-protection marker sirtuin-1 in SH-SY-5Y cells. Conclusions: Altogether, our results indicate that P. gingivalis-derived PGDHC ceramide promotes amyloidogenesis and hyperphosphorylation, as well as the production of SASP factors. Thus, PGDHC may represent a novel class of bacterial-derived virulence factors for AD associated with periodontitis.


Assuntos
Doença de Alzheimer/etiologia , Doença de Alzheimer/metabolismo , Ceramidas/biossíntese , Suscetibilidade a Doenças , Periodontite/complicações , Periodontite/microbiologia , Porphyromonas gingivalis/metabolismo , Doença de Alzheimer/patologia , Secretases da Proteína Precursora do Amiloide/metabolismo , Peptídeos beta-Amiloides/metabolismo , Animais , Ácido Aspártico Endopeptidases/metabolismo , Linhagem Celular , Humanos , Fosforilação , Proteínas tau/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA