Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Mol Ecol ; 33(4): e17047, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37337919

RESUMO

Coral reefs rank among the most diverse species assemblages on Earth. A particularly striking aspect of coral reef communities is the variety of colour patterns displayed by reef fishes. Colour pattern is known to play a central role in the ecology and evolution of reef fishes through, for example, signalling or camouflage. Nevertheless, colour pattern is a complex trait in reef fishes-actually a collection of traits-that is difficult to analyse in a quantitative and standardized way. This is the challenge that we address in this study using the hamlets (Hypoplectrus spp., Serranidae) as a model system. Our approach involves a custom underwater camera system to take orientation- and size-standardized photographs in situ, colour correction, alignment of the fish images with a combination of landmarks and Bézier curves, and principal component analysis on the colour value of each pixel of each aligned fish. This approach identifies the major colour pattern elements that contribute to phenotypic variation in the group. Furthermore, we complement the image analysis with whole-genome sequencing to run a multivariate genome-wide association study for colour pattern variation. This second layer of analysis reveals sharp association peaks along the hamlet genome for each colour pattern element and allows to characterize the phenotypic effect of the single nucleotide polymorphisms that are most strongly associated with colour pattern variation at each association peak. Our results suggest that the diversity of colour patterns displayed by the hamlets is generated by a modular genomic and phenotypic architecture.


Assuntos
Peixes , Estudo de Associação Genômica Ampla , Animais , Cor , Peixes/genética , Recifes de Corais , Genômica
2.
Am Nat ; 190(1): 144-151, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28617634

RESUMO

Male cuttlefish compete for females with a repertoire of visually dramatic behaviors. Laboratory experiments have explored this system in Sepia officinalis, but corroborative field data have eluded collection attempts by many researchers. While scuba diving in Turkey, we fortuitously filmed an intense sequence of consort/intruder behaviors in which the consort lost and then regained his female mate from the intruder. These agonistic bouts escalated in stages, leading to fast dramatic expression of the elaborate intense zebra display and culminating in biting and inking as the intruder male attempted a forced copulation of the female. When analyzed in the context of game theory, the patterns of fighting behavior were more consistent with mutual assessment than self-assessment of fighting ability. Additional observations of these behaviors in nature are needed to conclusively determine which models best represent conflict resolution, but our field observations agree with laboratory findings and provide a valuable perspective.


Assuntos
Agressão , Copulação , Decapodiformes , Animais , Feminino , Masculino , Sepia
3.
J Opt Soc Am A Opt Image Sci Vis ; 31(4): A27-33, 2014 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-24695182

RESUMO

Animals use color vision for a number of tasks including food localization, object recognition, communication, and mate selection. For these and other specific behaviors involving the use of color cues, models that quantify color discriminability have been developed. These models take as input the photoreceptor spectral sensitivities of the animal and radiance spectra of the surfaces of interest. These spectra are usually acquired using spectroscopic instruments that collect point-by-point data and can easily yield signals contaminated with neighboring colors if not operated carefully. In this paper, I present an equation that relates the optical fiber diameter and numerical aperture to the measurement angle and distance needed to record uncontaminated spectra. I demonstrate its utility by testing the discriminability of two solid colors for the visual systems of a dichromatic ferret and a trichromatic frog in (1) a conspicuous scenario where the colors have little spectral overlap and (2) a perfect camouflage scenario where the spectra are identical. This equation is derived from geometrical optics and is applicable to spectroscopic measurements in all fields.


Assuntos
Percepção de Cores/fisiologia , Visão de Cores/fisiologia , Discriminação Psicológica/fisiologia , Modelos Biológicos , Análise Espectral , Animais , Anuros , Furões , Fibras Ópticas
4.
J Opt Soc Am A Opt Image Sci Vis ; 31(2): 312-21, 2014 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-24562030

RESUMO

Commercial off-the-shelf digital cameras are inexpensive and easy-to-use instruments that can be used for quantitative scientific data acquisition if images are captured in raw format and processed so that they maintain a linear relationship with scene radiance. Here we describe the image-processing steps required for consistent data acquisition with color cameras. In addition, we present a method for scene-specific color calibration that increases the accuracy of color capture when a scene contains colors that are not well represented in the gamut of a standard color-calibration target. We demonstrate applications of the proposed methodology in the fields of biomedical engineering, artwork photography, perception science, marine biology, and underwater imaging.


Assuntos
Processamento de Imagem Assistida por Computador/métodos , Fotografação/métodos , Animais , Arte , Calibragem , Cor , Decapodiformes , Ecossistema , Sódio
5.
Artigo em Inglês | MEDLINE | ID: mdl-23254307

RESUMO

Cephalopods are renowned for their ability to adaptively camouflage on diverse backgrounds. Sepia officinalis camouflage body patterns have been characterized spectrally in the laboratory but not in the field due to the challenges of dynamic natural light fields and the difficulty of using spectrophotometric instruments underwater. To assess cuttlefish color match in their natural habitats, we studied the spectral properties of S. officinalis and their backgrounds on the Aegean coast of Turkey using point-by-point in situ spectrometry. Fifteen spectrometry datasets were collected from seven cuttlefish; radiance spectra from animal body components and surrounding substrates were measured at depths shallower than 5 m. We quantified luminance and color contrast of cuttlefish components and background substrates in the eyes of hypothetical di- and trichromatic fish predators. Additionally, we converted radiance spectra to sRGB color space to simulate their in situ appearance to a human observer. Within the range of natural colors at our study site, cuttlefish closely matched the substrate spectra in a variety of body patterns. Theoretical calculations showed that this effect might be more pronounced at greater depths. We also showed that a non-biological method ("Spectral Angle Mapper"), commonly used for spectral shape similarity assessment in the field of remote sensing, shows moderate correlation to biological measures of color contrast. This performance is comparable to that of a traditional measure of spectral shape similarity, hue and chroma. This study is among the first to quantify color matching of camouflaged cuttlefish in the wild.


Assuntos
Adaptação Biológica , Comportamento Animal/fisiologia , Luz , Sepia/fisiologia , Pigmentação da Pele , Animais , Cor , Sensibilidades de Contraste , Discriminação Psicológica , Meio Ambiente
6.
Science ; 379(6633): 695-700, 2023 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-36795838

RESUMO

Many oceanic prey animals use transparent bodies to avoid detection. However, conspicuous eye pigments, required for vision, compromise the organisms' ability to remain unseen. We report the discovery of a reflector overlying the eye pigments in larval decapod crustaceans and show how it is tuned to render the organisms inconspicuous against the background. The ultracompact reflector is constructed from a photonic glass of crystalline isoxanthopterin nanospheres. The nanospheres' size and ordering are modulated to tune the reflectance from deep blue to yellow, enabling concealment in different habitats. The reflector may also function to enhance the acuity or sensitivity of the minute eyes by acting as an optical screen between photoreceptors. This multifunctional reflector offers inspiration for constructing tunable artificial photonic materials from biocompatible organic molecules.


Assuntos
Mimetismo Biológico , Crustáceos , Células Fotorreceptoras de Invertebrados , Visão Ocular , Animais , Crustáceos/fisiologia , Olho/ultraestrutura , Fótons , Mimetismo Biológico/fisiologia , Células Fotorreceptoras de Invertebrados/fisiologia
7.
Micromachines (Basel) ; 12(11)2021 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-34832844

RESUMO

Paper-based microchip electrophoresis has the potential to bring laboratory electrophoresis tests to the point of need. However, high electric potential and current values induce pH and temperature shifts, which may affect biomolecule electrophoretic mobility thus decrease test reproducibility and accuracy of paper-based microfluidic electrophoresis. We have previously developed a microchip electrophoresis system, HemeChip, which has the capability of providing low-cost, rapid, reproducible, and accurate point-of-care (POC) electrophoresis tests for hemoglobin analysis. Here, we report the methodologies we implemented for characterizing HemeChip system pH and temperature during the development process, including utilizing commercially available universal pH indicator and digital camera pH shift characterization, and infrared camera characterizing temperature shift characterization. The characterization results demonstrated that pH shifts up to 1.1 units, a pH gradient up to 0.11 units/mm, temperature shifts up to 40 °C, and a temperature gradient up to 0.5 °C/mm existed in the system. Finally, we report an acid pre-treatment of the separation media, a cellulose acetate paper, mitigated both pH and temperature shifts and provided a stable environment for reproducible HemeChip hemoglobin electrophoresis separation.

8.
Interface Focus ; 9(1): 20180053, 2019 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-30603072

RESUMO

The use of artificially coloured stimuli, especially to test hypotheses about sexual selection and anti-predator defence, has been common in behavioural ecology since the pioneering work of Tinbergen. To investigate the effects of colour on animal behaviour, many researchers use paints, markers and dyes to modify existing colours or to add colour to synthetic models. Because colour perception varies widely across species, it is critical to account for the signal receiver's vision when performing colour manipulations. To explore this, we applied 26 typical coloration products to different types of avian feathers. Next, we measured the artificially coloured feathers using two complementary techniques-spectrophotometry and digital ultraviolet--visible photography-and modelled their appearance to mammalian dichromats (ferret, dog), trichromats (honeybee, human) and avian tetrachromats (hummingbird, blue tit). Overall, artificial colours can have dramatic and sometimes unexpected effects on the reflectance properties of feathers, often differing based on feather type. The degree to which an artificial colour differs from the original colour greatly depends on an animal's visual system. 'White' paint to a human is not 'white' to a honeybee or blue tit. Based on our analysis, we offer practical guidelines for reducing the risk of introducing unintended effects when using artificial colours in behavioural experiments.

9.
Acta Biomater ; 96: 631-645, 2019 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-31302296

RESUMO

In reef-building corals, larval settlement and its rapid calcification provides a unique opportunity to study the bio-calcium carbonate formation mechanism involving skeleton morphological changes. Here we investigate the mineral formation of primary polyps, just after settlement, in two species of the pocilloporoid corals: Stylophora pistillata (Esper, 1797) and Pocillopora acuta (Lamarck, 1816). We show that the initial mineral phase is nascent Mg-Calcite, with rod-like morphology in P. acuta, and dumbbell morphology in S. pistillata. These structures constitute the first layer of the basal plate which is comparable to Rapid Accretion Deposits (Centers of Calcification, CoC) in adult coral skeleton. We found also that the rod-like/dumbbell Mg-Calcite structures in subsequent growth step will merge into larger aggregates by deposition of aragonite needles. Our results suggest that a biologically controlled mineralization of initial skeletal deposits occurs in three steps: first, vesicles filled with divalent ions are formed intracellularly. These vesicles are then transferred to the calcification site, forming nascent Mg-Calcite rod/pristine dumbbell structures. During the third step, aragonite crystals develop between these structures forming spherulite-like aggregates. STATEMENT OF SIGNIFICANCE: Coral settlement and recruitment periods are highly sensitive to environmental conditions. Successful mineralization during these periods is vital and influences the coral's chances of survival. Therefore, understanding the exact mechanism underlying carbonate precipitation is highly important. Here, we used in vivo microscopy, spectroscopy and molecular methods to provide new insights into mineral development. We show that the primary polyp's mineral arsenal consists of two types of minerals: Mg-Calcite and aragonite. In addition, we provide new insights into the ion pathway by showing that divalent ions are concentrated in intracellular vesicles and are eventually deposited at the calcification site.


Assuntos
Antozoários , Calcificação Fisiológica/fisiologia , Carbonato de Cálcio/metabolismo , Animais , Antozoários/anatomia & histologia , Antozoários/crescimento & desenvolvimento
10.
PeerJ ; 5: e3821, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28970967

RESUMO

Mating behaviour and predation avoidance in Heliconius involve visual colour signals; however, there is considerable inter-individual phenotypic variation in the appearance of colours. In particular, the red pigment varies from bright crimson to faded red. It has been thought that this variation is primarily due to pigment fading with age, although this has not been explicitly tested. Previous studies have shown the importance of red patterns in mate choice and that birds and butterflies might perceive these small colour differences. Using digital photography and calibrated colour images, we investigated whether the hue variation in the forewing dorsal red band of Heliconius melpomene rosina corresponds with age. We found that the red hue and age were highly associated, suggesting that red colour can indeed be used as a proxy for age in the study of wild-caught butterflies.

11.
R Soc Open Sci ; 4(3): 160824, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28405370

RESUMO

Flounder change colour and pattern for camouflage. We used a spectrometer to measure reflectance spectra and a digital camera to capture body patterns of two flounder species camouflaged on four natural backgrounds of different spatial scale (sand, small gravel, large gravel and rocks). We quantified the degree of spectral match between flounder and background relative to the situation of perfect camouflage in which flounder and background were assumed to have identical spectral distribution. Computations were carried out for three biologically relevant observers: monochromatic squid, dichromatic crab and trichromatic guitarfish. Our computations present a new approach to analysing datasets with multiple spectra that have large variance. Furthermore, to investigate the spatial match between flounder and background, images of flounder patterns were analysed using a custom program originally developed to study cuttlefish camouflage. Our results show that all flounder and background spectra fall within the same colour gamut and that, in terms of different observer visual systems, flounder matched most substrates in luminance and colour contrast. Flounder matched the spatial scales of all substrates except for rocks. We discuss findings in terms of flounder biology; furthermore, we discuss our methodology in light of hyperspectral technologies that combine high-resolution spectral and spatial imaging.

12.
Science ; 356(6344): 1249-1254, 2017 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-28642430

RESUMO

Avian egg shape is generally explained as an adaptation to life history, yet we currently lack a global synthesis of how egg-shape differences arise and evolve. Here, we apply morphometric, mechanistic, and macroevolutionary analyses to the egg shapes of 1400 bird species. We characterize egg-shape diversity in terms of two biologically relevant variables, asymmetry and ellipticity, allowing us to quantify the observed morphologies in a two-dimensional morphospace. We then propose a simple mechanical model that explains the observed egg-shape diversity based on geometric and material properties of the egg membrane. Finally, using phylogenetic models, we show that egg shape correlates with flight ability on broad taxonomic scales, suggesting that adaptations for flight may have been critical drivers of egg-shape variation in birds.


Assuntos
Adaptação Fisiológica/fisiologia , Evolução Biológica , Aves/anatomia & histologia , Aves/fisiologia , Modelos Biológicos , Óvulo/citologia , Animais , Biodiversidade , Fenômenos Biofísicos , Voo Animal/fisiologia , Filogenia
13.
Sci Rep ; 6: 36917, 2016 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-27841297

RESUMO

Various physiological and pathological processes, such as cell differentiation, migration, attachment, and metastasis are highly dependent on nuclear elasticity. Nuclear morphology directly reflects the elasticity of the nucleus. We propose that quantification of changes in nuclear morphology on surfaces with defined topography will enable us to assess nuclear elasticity and deformability. Here, we used soft lithography techniques to produce 3 dimensional (3-D) cell culture substrates decorated with micron sized pillar structures of variable aspect ratios and dimensions to induce changes in cellular and nuclear morphology. We developed a high content image analysis algorithm to quantify changes in nuclear morphology at the single-cell level in response to physical cues from the 3-D culture substrate. We present that nuclear stiffness can be used as a physical parameter to evaluate cancer cells based on their lineage and in comparison to non-cancerous cells originating from the same tissue type. This methodology can be exploited for systematic study of mechanical characteristics of large cell populations complementing conventional tools such as atomic force microscopy and nanoindentation.


Assuntos
Técnicas de Cultura de Células/métodos , Núcleo Celular/fisiologia , Análise de Célula Única/instrumentação , Algoritmos , Linhagem Celular Tumoral , Elasticidade , Humanos , Células MCF-7 , Análise de Célula Única/métodos , Estresse Mecânico
14.
Sci Rep ; 6: 24751, 2016 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-27109385

RESUMO

Biofluorescence has recently been found to be widespread in marine fishes, including sharks. Catsharks, such as the Swell Shark (Cephaloscyllium ventriosum) from the eastern Pacific and the Chain Catshark (Scyliorhinus retifer) from the western Atlantic, are known to exhibit bright green fluorescence. We examined the spectral sensitivity and visual characteristics of these reclusive sharks, while also considering the fluorescent properties of their skin. Spectral absorbance of the photoreceptor cells in these sharks revealed the presence of a single visual pigment in each species. Cephaloscyllium ventriosum exhibited a maximum absorbance of 484 ± 3 nm and an absorbance range at half maximum (λ1/2max) of 440-540 nm, whereas for S. retifer maximum absorbance was 488 ± 3 nm with the same absorbance range. Using the photoreceptor properties derived here, a "shark eye" camera was designed and developed that yielded contrast information on areas where fluorescence is anatomically distributed on the shark, as seen from other sharks' eyes of these two species. Phylogenetic investigations indicate that biofluorescence has evolved at least three times in cartilaginous fishes. The repeated evolution of biofluorescence in elasmobranchs, coupled with a visual adaptation to detect it; and evidence that biofluorescence creates greater luminosity contrast with the surrounding background, highlights the potential importance of biofluorescence in elasmobranch behavior and biology.


Assuntos
Elasmobrânquios/fisiologia , Fluorescência , Células Fotorreceptoras/fisiologia , Pigmentos Biológicos/metabolismo , Tubarões/fisiologia , Adaptação Ocular , Animais , Comportamento , Evolução Biológica , Filogenia , Pigmentos Biológicos/química , Fenômenos Fisiológicos da Pele , Visão Ocular
15.
Biol J Linn Soc Lond ; 116(2): 377-396, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35310331

RESUMO

The slender filefish is a master of adaptive camouflage and can change its appearance within 1-3 seconds. Videos and photographs of this animal's cryptic body patterning and behavior were collected in situ under natural light on a Caribbean coral reef. We present an ethogram of body patterning components that includes large- and small-scale spots, stripes and bars that confer a variety of cryptic patterns amidst a range of complex backgrounds. Field images were analyzed to investigate two aspects of camouflage effectiveness: (i) the degree of color resemblance between animals and their nearby visual stimuli and (ii) the visibility of each fish's actual body outline versus its illusory outline. Most animals more closely matched the color of nearby visual stimuli than that of the surrounding background. Three-dimensional dermal flaps complement the melanophore skin patterns by enhancing the complexity of the fish's physical skin texture to disguise its actual body shape, and the morphology of these structures was studied. The results suggest that the body patterns, skin texture, postures and swimming orientations putatively hinder both the detection and recognition of the fish by potential visual predators. Overall, the rapid speed of change of multiple patterns, color blending with nearby backgrounds, and the physically complicated edge produced by dermal flaps effectively camouflage this animal among soft corals and macroalgae in the Caribbean Sea.

16.
Adv Healthc Mater ; 1(5): 661-8, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23184803

RESUMO

Stimuli responsive, smart interface materials are integrated with microfluidic technologies creating new functions for a broad range of biological and clinical applications by controlling the material and cell interactions. Local capture and on-demand local release of cells are demonstrated with spatial and temporal control in a microfluidic system.


Assuntos
Resinas Acrílicas/química , Separação Celular/instrumentação , Citometria de Fluxo/instrumentação , Calefação/instrumentação , Linfócitos/citologia , Técnicas Analíticas Microfluídicas/instrumentação , Adesão Celular , Movimento Celular , Células Cultivadas , Desenho de Equipamento , Análise de Falha de Equipamento , Humanos , Integração de Sistemas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA