RESUMO
Rhodamine-imidazole hydrazones (RIH-1 & RIH-2) based chemosensors have been synthesized. These are characterised and evaluated by FT-IR spectroscopy, 1H-NMR, 13C-NMR, LCMS, absorption and fluorescence spectroscopy. These chemosensors exhibit enhanced sensitivity and selectivity in detecting the biologically significant Fe3+ metal ion through both colorimetric and fluorescence changes. The optical properties have been investigated using binary acetonitrile-water (7:3 v/v) semi-aqueous solution. The probe RIH-1 can be deployed as a fluorescent and colorimetric probe for the detection of Fe3+ ion. It shows an absorption band at 559 nm and an intensity band at 579 nm increasing up to 50-fold with the increase in the concentration of Fe3+ with the detection limit as low as 11nM. In the visible light, RIH-1 helps in the detection of Fe3+ ion through the naked eye, while the addition of Fe3+ to the probe RIH-1 results in a colour change from colourless to pink. This is primarily due to the opening of the lactone ring in RIH-1. Notably, RIH-1 probe displays a high quantum yield of 0.51, after binding with Fe3+ ions. Indeed, it has been found that sensor RIH-1 is very effective in sensing Fe3+ ions through both fluorescence based and visual detection methods. Additionally, DFT studies of these chemosensors have been evaluated, TGA and DSC analysis showed good thermal stability.
RESUMO
G-Quadruplex (G4) structures play vital roles in many biological processes; consequently, they have been implicated in various human diseases like cancer, Alzheimer's disease etc. The selective detection of G4 DNA structures is of great interest for understanding their roles and biological functions. Hence, development of multifunctional fluorescent probes is indeed essential. In this investigation, we have synthesized a quinolinium based dual application probe (QnMF) that presents molecular rotor properties. This dual application molecular rotor is able to detect selectively antiparallel G4 sequences (22AG in 100 mM NaCl) through a turn-on response over other G4 topologies. The QnMF also contains a distinct fluorine-19 that undergoes a significant chemical shift in response to microenvironmental changes around the molecule when bound to G4 structures. The probe QnMF exhibits significantly brighter fluorescence emissions in glycerol (ε × Ï = 2800 cm-1 M-1) and relatively less brighter fluorescence emissions in methanol (ε × Ï = 40.5 cm-1 M-1). The restricted rotation inherent property of the QnMF molecular rotor is responsible for brighter fluorescence and leads to enhancement in the fluorescence upon binding to the G4 structure. Overall, the probe's dual detection method makes it useful for monitoring the G4 structures that are abundant and plays a vital role in living organisms.
Assuntos
Quadruplex G , Humanos , Espectrometria de Fluorescência , Corantes Fluorescentes/químicaRESUMO
The paper describes the construction of a new series of pyrimidinone-linked thiazole derivatives through bromination of the initial Biginelli reaction product followed by the Hantzsch thiazole synthesis route. Various analytical techniques, including FT-IR, 1H NMR, 13C NMR, and LCMS analysis, were employed to confirm the formation of the products. The synthesized compounds were primarily evaluated for their antibacterial activity, with a specific focus on their IC50 values. Compound 4c demonstrated the most potent efficacy, displaying MIC and MBC values that varied from 0.23 to 0.71 mg/mL and 0.46-0.95 mg/mL, respectively. The anti-inflammatory potential was also observed in analogs 4a and 4c with marked activity in the 33.2-82.9 µM concentration range. Moreover, compounds 4a, and 4c demonstrated strong antioxidant effects, as reflected by their excellent IC50 values of 38.6-43.5 µM respectively. DFT investigation showed that B. cereus was more susceptible, and E. coli was more resistant, with chloro-substituted compounds exhibiting potential reactivity. Some molecules with chloro-substituents showed promising results in density functional theory when compared to other substituents. In addition, the molecules underwent a corrosion study and demonstrated a high level of inhibition efficiency (4c) in comparison to other molecules. Further in silico studies of the synthesized thiazoles confirmed the good interactions with the target.