Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Mol Biol Rep ; 49(6): 5209-5217, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34291396

RESUMO

Olive (Olea europaea L.) is one of the most economically important crop from east to the west around the world. The aim of this research was to investigate the genetic relationship among 41 olive genotypes, including 11 well-known Turkish cultivars and 30 Azerbaijani olive genotypes using simple sequence repeat (SSR) markers. In this study, 19 SSR markers were amplified 115 polymorphic SSR alleles. The number of polymorphic alleles ranged from 3 to 10 with an average of 6.05. The observed heterozygosity (Ho) varied from 0.05 to 0.93 with an average of 0.63 and expected heterozygosity (He) differed from 0.26 to 0.86 with an average of 0.72. The polymorphism information content (PIC) ranged from 0.23 to 0.85 with a mean of 0.68. A UPGMA cluster analysis grouped olive genotypes into two distinct clusters and both clusters were divided into two subgroups. Similarly, STRUCTURE analysis assigned olive genotypes into two different gene pools (K = 2) and four gene pools were identified representing the two subgroups by STRUCTURE analysis for K = 4. The genetic similarity of olive genotypes ranged from 0.36 to 0.95. These results revealed that there was a high genetic variation among 30 Azerbaijani olive genotypes. 'Ayvalik 1'and 'Ayvalik 2' from Azerbaijani olive genotypes were different from Turkish local olive cultivar, "Ayvalik" indicating homonymy. This research also highlighted that Azerbaijani olive genotypes were totally distinct from Turkish olive cultivars demonstrating that these olive genotypes might have been imported to Azerbaijan from different countries other than Turkey. The outcomes of this study indicated that these diverse olive genotypes could be useful for development of new olive varieties in Azerbaijan and future breeding programs between two countries could be enhanced by means of these results.


Assuntos
Olea , Azerbaijão , Variação Genética/genética , Genótipo , Humanos , Repetições de Microssatélites/genética , Olea/genética , Melhoramento Vegetal , Polimorfismo Genético/genética , Turquia
2.
Planta ; 243(2): 441-9, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26452697

RESUMO

MAIN CONCLUSION: Punica granatum has a noticeable adaptation to drought stress. The levels of the green leaf volatile trans-2-hexenal increased in response to drought stress suggesting a possible role of this compound in drought stress response in pomegranate. Punica granatum (L.) is a highly valued fruit crop for its health-promoting effects and it is mainly cultivated in semi-arid areas. Thus, understanding the response mechanisms to drought stress is of great importance. In the present research, a metabolomics analysis was performed to evaluate the effects of drought stress on volatile organic compounds extracted from the leaves of pomegranate plants grown under water shortage conditions. The time course experiment (7 days of water deprivation and 24-h recovery) consisted of three treatments (control, drought stress, and rehydration of drought-stressed plants). Plant weights were recorded and control plants were irrigated daily at pot capacity to provide the lost water. Fraction of transpirable soil water has been evaluated as indicator of soil water availability in stressed plants. The levels of proline, hydrogen peroxide and lipid peroxidation as well as of the photosynthetic parameters such as photosynthesis rate (A), stomatal conductance (g s), photosynthetic efficiency of photosystem II, and photochemical quenching were monitored after the imposition of drought stress and recovery as markers of plant stress. Constitutive carbon volatile components were analyzed in the leaf of control and drought-stressed leaves using Head Space Solid Phase Micro Extraction sampling coupled with Gas Chromatography Mass Spectrometry. A total of 12 volatile compounds were found in pomegranate leaf profiles, mainly aldehydes, alcohols, and organic acids. Among them, the trans-2-hexenal showed a significant increase in water-stressed and recovered leaves respect to the well-watered ones. These data evidence a possible role of the oxylipin pathway in the response to water stress in pomegranate plants.


Assuntos
Aldeídos/metabolismo , Secas , Lythraceae/metabolismo , Estresse Fisiológico , Clorofila/metabolismo , Clorofila A , Peróxido de Hidrogênio/metabolismo , Peroxidação de Lipídeos , Lythraceae/genética , Lythraceae/fisiologia , Folhas de Planta/genética , Folhas de Planta/metabolismo , Folhas de Planta/fisiologia , Estômatos de Plantas/metabolismo , Estômatos de Plantas/fisiologia , Prolina/metabolismo
3.
Mol Ecol ; 25(19): 4712-29, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27480465

RESUMO

Studying domesticated species and their wild relatives allows understanding of the mechanisms of population divergence and adaptation, and identifying valuable genetic resources. Apricot is an important fruit in the Northern hemisphere, where it is threatened by the Plum pox virus (PPV), causing the sharka disease. The histories of apricot domestication and of its resistance to sharka are however still poorly understood. We used 18 microsatellite markers to genotype a collection of 230 wild trees from Central Asia and 142 cultivated apricots as representatives of the worldwide cultivated apricot germplasm; we also performed experimental PPV inoculation tests. The genetic markers revealed highest levels of diversity in Central Asian and Chinese wild and cultivated apricots, confirming an origin in this region. In cultivated apricots, Chinese accessions were differentiated from more Western accessions, while cultivated apricots were differentiated from wild apricots. An approximate Bayesian approach indicated that apricots likely underwent two independent domestication events, with bottlenecks, from the same wild population. Central Asian native apricots exhibited genetic subdivision and high frequency of resistance to sharka. Altogether, our results contribute to the understanding of the domestication history of cultivated apricot and point to valuable genetic diversity in the extant genetic resources of wild apricots.


Assuntos
Resistência à Doença/genética , Doenças das Plantas/genética , Vírus Eruptivo da Ameixa , Prunus armeniaca/genética , Prunus armeniaca/virologia , Ásia , Teorema de Bayes , Domesticação , Genótipo , Repetições de Microssatélites , Doenças das Plantas/virologia
4.
Front Plant Sci ; 14: 1039211, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36993855

RESUMO

Pomegranate has a unique evolutionary history given that different cultivars have eight or nine bivalent chromosomes with possible crossability between the two classes. Therefore, it is important to study chromosome evolution in pomegranate to understand the dynamics of its population. Here, we de novo assembled the Azerbaijani cultivar "Azerbaijan guloyshasi" (AG2017; 2n = 16) and re-sequenced six cultivars to track the evolution of pomegranate and to compare it with previously published de novo assembled and re-sequenced cultivars. High synteny was observed between AG2017, Bhagawa (2n = 16), Tunisia (2n = 16), and Dabenzi (2n = 18), but these four cultivars diverged from the cultivar Taishanhong (2n = 18) with several rearrangements indicating the presence of two major chromosome evolution events. Major presence/absence variations were not observed as >99% of the five genomes aligned across the cultivars, while >99% of the pan-genic content was represented by Tunisia and Taishanhong only. We also revisited the divergence between soft- and hard-seeded cultivars with less structured population genomic data, compared to previous studies, to refine the selected genomic regions and detect global migration routes for pomegranate. We reported a unique admixture between soft- and hard-seeded cultivars that can be exploited to improve the diversity, quality, and adaptability of local pomegranate varieties around the world. Our study adds body knowledge to understanding the evolution of the pomegranate genome and its implications for the population structure of global pomegranate diversity, as well as planning breeding programs aiming to develop improved cultivars.

5.
Sci Rep ; 13(1): 15247, 2023 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-37709842

RESUMO

Members of the eukaryotic translation initiation complex are co-opted in viral infection, leading to susceptibility in many crop species, including stone fruit trees (Prunus spp.). Therefore, modification of one of those eukaryotic translation initiation factors or changes in their gene expression may result in resistance. We searched the crop and wild Prunus germplasm from the Armeniaca and Amygdalus taxonomic sections for allelic variants in the eIF4E and eIFiso4E genes, to identify alleles potentially linked to resistance to Plum pox virus (PPV). Over one thousand stone fruit accessions (1397) were screened for variation in eIF4E and eIFiso4E transcript sequences which are in single copy within the diploid Prunus genome. We identified new alleles for both genes differing from haplotypes associated with PPV susceptible accessions. Overall, analyses showed that eIFiso4E is genetically more constrained since it displayed less polymorphism than eIF4E. We also demonstrated more variations at both loci in the related wild species than in crop species. As the eIFiso4E translation initiation factor was identified as indispensable for PPV infection, a selection of ten different eIFiso4E haplotypes along 13 accessions were tested by infection with PPV and eight of them displayed a range of reduced susceptibility to resistance, indicating new potential sources of resistance to sharka.


Assuntos
Fator de Iniciação 4E em Eucariotos , Prunus , Alelos , Fator de Iniciação 4E em Eucariotos/genética , Fatores de Iniciação em Eucariotos/genética , Citoplasma , Prunus/genética
6.
Plants (Basel) ; 11(14)2022 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-35890473

RESUMO

The Adapting Agriculture to Climate Change Project set out to improve the diversity, quantity, and accessibility of germplasm collections of crop wild relatives (CWR). Between 2013 and 2018, partners in 25 countries, heirs to the globetrotting legacy of Nikolai Vavilov, undertook seed collecting expeditions targeting CWR of 28 crops of global significance for agriculture. Here, we describe the implementation of the 25 national collecting programs and present the key results. A total of 4587 unique seed samples from at least 355 CWR taxa were collected, conserved ex situ, safety duplicated in national and international genebanks, and made available through the Multilateral System (MLS) of the International Treaty on Plant Genetic Resources for Food and Agriculture (Plant Treaty). Collections of CWR were made for all 28 targeted crops. Potato and eggplant were the most collected genepools, although the greatest number of primary genepool collections were made for rice. Overall, alfalfa, Bambara groundnut, grass pea and wheat were the genepools for which targets were best achieved. Several of the newly collected samples have already been used in pre-breeding programs to adapt crops to future challenges.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA