Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Soft Matter ; 17(34): 7953-7962, 2021 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-34378621

RESUMO

Chiral, rod-like molecules can self-assemble into cylindrical membrane tubules and helical ribbons. They have been successfully modeled using the theory of chiral nematics. Models have also predicted the role of chiral lipids in forming nanometer-sized membrane buds in the cell. However, in most theoretical studies, the membrane shapes are considered fixed (cylinder, sphere, saddle, etc.), and their optimum radii of curvatures are found variationally by minimizing the energy of the composite system consisting of membrane and chiral nematics. Numerical simulations have only recently started to consider membrane deformation and chiral orientation simultaneously. Here we examine how deformable, closed membrane vesicles and chiral nematic rods mutually influence each other's shape and orientation, respectively, using Monte Carlo (MC) simulation on a closed triangulated surface. For this, we adopt a discrete form of chiral interaction between rods, originally proposed by Van der Meer et al., for off-lattice simulations. In our simulation, both conical and short cylindrical tubules emerge, depending on the membrane stiffness and the intrinsic chirality of the molecules. We show that the Helfrich-Prost term, which couples nematic tilt with local membrane curvature in continuum models, can account for most of the observations in the simulation. At higher chirality, our theory also predicts a chiral tweed phase on cones, with varying bandwidths.


Assuntos
Proteínas de Membrana , Modelos Teóricos , Simulação por Computador , Membranas , Método de Monte Carlo
2.
Soft Matter ; 16(45): 10310-10319, 2020 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-33237118

RESUMO

Colloidal membranes, self assembled monolayers of aligned rod like molecules, offer a template for designing membranes with definite shapes and curvature, and possibly new functionalities in the future. Often the constituent rods, due to their molecular chirality, are tilted with respect to the membrane normal. Spatial patterns of this tilt on curved membranes result from a competition among depletion forces, nematic interactions, molecular chirality and boundary effects. We present a covariant theory for the tilt pattern on minimal surfaces, like helicoids and catenoids, which have been generated in the laboratory only recently. We predict several non-uniform tilt patterns, some of which are consistent with experimental observations and some, which are yet to be discovered.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA