Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Molecules ; 25(11)2020 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-32486047

RESUMO

Ginkgo biloba extract possess several promising biological activities; currently, it is clinically employed in the management of several diseases. This research work aimed to extrapolate the antioxidant and anti-inflammatory effects of Ginkgo biloba (Gb) in methotrexate (MTX)-induced liver toxicity model. These effects were analyzed using different in vivo experimental approaches and by bioinformatics analysis. Male SD rats were grouped as follows: saline; MTX; Gb (pretreated for seven days with 60, 120, and 180 mg/kg daily dose before MTX treatment); silymarin (followed by MTX treatment); Gb 180 mg/kg daily only; and silymarin only. Histopathological results revealed that MTX induced marked hepatic injury, associated with a substantial surge in various hepatic enzymes such as alanine transaminase (ALT), aspartate transaminase (AST), and serum alkaline phosphatase (ALP). Furthermore, MTX caused the triggering of oxidative distress associated with a depressed antioxidant system. All these injury markers contributed to a significant release of apoptotic (caspase-3 and c-Jun N-terminal kinases (JNK)) and tumor necrosis factor (TNF-α)-like inflammatory mediators. Treatment with Gb counteracts MTX-mediated apoptosis and inflammation dose-dependently along with modulating the innate antioxidative mechanisms such as glutathione (GSH) and glutathione S-transferase (GST). These results were further supplemented by in silico study to analyze drug-receptor interactions (for several Gb constituents and target proteins) stabilized by a low energy value and with a good number of hydrogen bonds. These findings demonstrated that Gb could ameliorate MTX-induced elevated liver reactive oxygen species (ROS) and inflammation, possibly by JNK and TNF-α modulation.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas/tratamento farmacológico , Fígado/efeitos dos fármacos , Metotrexato/toxicidade , Extratos Vegetais/farmacologia , Animais , Apoptose , Biomarcadores/metabolismo , Caspase 3/metabolismo , Biologia Computacional , Relação Dose-Resposta a Droga , Ácidos Graxos/química , Ginkgo biloba , Ligação de Hidrogênio , Imuno-Histoquímica , Inflamação , Fígado/metabolismo , MAP Quinase Quinase 4/metabolismo , Masculino , Estresse Oxidativo , Oxigênio/metabolismo , Substâncias Protetoras/farmacologia , Ligação Proteica , Ratos , Ratos Sprague-Dawley , Espécies Reativas de Oxigênio/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
2.
J Inflamm Res ; 15: 3873-3890, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35845091

RESUMO

Objective: The study investigated the effect of newly synthesized benzimidazole derivatives against ethanol-induced neurodegeneration. According to evidence, ethanol consumption may cause a severe insult to the central nervous system (CNS), resulting in mental retardation, neuronal degeneration, and oxidative stress. Targeting neuroinflammation and oxidative stress may be a useful strategy for preventing ethanol-induced neurodegeneration. Methodology: Firstly, the newly synthesized compounds were subjected to molecular simulation and docking in order to predict ligand binding status. Later, for in vivo observations, adult male Sprague Dawley rats were used for studying behavioral and oxidative stress markers. ELIZA kits were used to analyse tumour necrosis factor-alpha (TNF-), nuclear factor-B (NF-B), interleukin (IL-18), and pyrin domain-containing protein 3 (NLRP3) expression, while Western blotting was used to measure IL-1 and Caspase-1 expression. Results: Our findings suggested that altered levels of antioxidant enzymes were associated with elevated levels of TNF-α, NF-B, IL-1, IL-18, Caspase-1, and NLRP3 in the ethanol-treated group. Furthermore, ethanol also caused memory impairment in rats, as measured by behavioural tests. Pretreatment using selected benzimidazole significantly increased the combat of the brain against ethanol-induced oxidative stress. The neuroprotective effects of benzimidazole derivatives were promoted by their free radical scavenging activity, augmentation of endogenous antioxidant proteins (GST, GSH), and amelioration of lipid peroxide (LPO) and other pro-inflammatory mediators. Molecular docking and molecular simulation studies further supported our hypothesis that the synthetic compounds Ca and Cb had an excellent binding affinity with proper bond formation with their targets (TNF-α and NLRP3). Conclusion: It is revealed that these benzimidazole derivatives can reduce ethanol-induced neuronal toxicity by regulating the expression of cytokines, antioxidant enzymes, and the inflammatory cascade.

3.
Drug Des Devel Ther ; 16: 1159-1170, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35496367

RESUMO

Purpose: Gouty arthritis is generally induced by the accumulation of monosodium urate (MSU) crystals in the joints due to elevated serum uric acid levels, potentially leading to serious pathological disorders such as nephrolithiasis, renal failure, and acute gouty arthritis. In this study, we aimed to validate the anti-gout effects of carvacrol, a phenolic monoterpene. Materials and Methods: Male Sprague-Dawley rats were divided into normal saline, disease group by injecting potassium mono-oxonate (PO) at a dose of 250 mg/kg, and three treatment groups, either with carvacrol 20 mg/kg or 50 mg/kg and 10 mg/kg allopurinol. The blood and tissue samples were subsequently collected and analyzed using different biochemical and histopathological techniques. Results: Our results revealed a significant increase in the serum levels of oxidative stress-related markers, namely, uric acid and C-reactive protein (CRP), and NLRP3 inflammasome-dependent inflammatory mediators, including nuclear factor kappa B (NF-κB) and tumor necrosis factor-alpha (TNF-α). Carvacrol administration for seven consecutive days exhibited significant anti-hyperuricemic and anti-inflammatory effects in a dose-dependent manner. Notably, the 50 mg/kg carvacrol treatment was observed to produce results similar to the allopurinol treatment. Furthermore, the renal safety of carvacrol was confirmed by the renal function test. Conclusion: Carvacrol potentially alleviates hyperuricemia-induced oxidative stress and inflammation by regulating the ROS/NRLP3/NF-κB pathway, thereby exerting protective effects against joint degeneration.


Assuntos
Artrite Gotosa , Hiperuricemia , Alopurinol/efeitos adversos , Animais , Artrite Gotosa/induzido quimicamente , Artrite Gotosa/tratamento farmacológico , Cimenos , Hiperuricemia/induzido quimicamente , Hiperuricemia/tratamento farmacológico , Inflamação/tratamento farmacológico , Inflamação/patologia , Masculino , NF-kappa B/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Estresse Oxidativo , Ratos , Ratos Sprague-Dawley , Ácido Úrico
4.
J Inflamm Res ; 15: 3643-3660, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35783245

RESUMO

Introduction: Several studies revealed that alcohol utilization impairs memory in adults; however, the underlying mechanism is still unclear. The production of inflammatory markers and reactive oxygen species (ROS) plays a major role in neurodegeneration, which leads to memory impairment. Therefore, targeting neuroinflammation and oxidative distress could be a useful strategy for abrogating the hallmarks of ethanol-induced neurodegeneration. Moreover, several studies have demonstrated multiple biological activities of thiazolidine derivatives including neuroprotection. Methods: In the current study, we synthesized ten (10) new thiazolidine-4-carboxylic acid derivatives (P1-P10), characterized their synthetic properties using proton nuclear magnetic resonance (1H-NMR) and carbon-13 NMR, and further investigated the neuroprotective potential of these compounds in an ethanol-induced neuroinflammation model. Results: Our results suggested altered levels of antioxidant enzymes associated with an elevated level of tumor necrosis factor-alpha (TNF-α), nuclear factor-κB (p-NF-κB), pyrin domain-containing protein 3 (NLRP3), and cyclooxygenase-2 (COX-2) in ethanol-treated animals. Ethanol treatment also led to memory impairment in rats, as assessed by behavioral tests. To further support our notion, we performed molecular docking studies, and all synthetic compounds exhibited a good binding affinity with a fair bond formation with selected targets (NF-κB, TLR4, NLRP3, and COX-2). Discussion: Overall, our results revealed that these derivatives may be beneficial in reducing neuroinflammation by acting on different stages of inflammation. Moreover, P8 and P9 treatment attenuated the neuroinflammation, oxidative stress, and memory impairment caused by ethanol.

5.
Oxid Med Cell Longev ; 2022: 4509204, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35295720

RESUMO

Major depressive disorder (MDD) is a progressive deteriorating mental state with a feeling of worthlessness and frequent mood swings. Several studies reported the favorable effects of natural drug substances on MMD associated oxidative stress and neuroinflammation. The present study is attempted to examine whether carveol could affect lipopolysaccharide- (LPS-) induced depression, and if so, how nuclear factor E2-related factor (Nrf2) contributed to the neuroprotective effects of carveol mechanistically. Two experimental cohorts were used using the SD rats: first to evaluate the promising dose of carveol (whether 20 mg/kg or 50 mg/kg) and secondly to determine the effect of carveol on Nrf2-mediated antidepression. Significant neuronal alterations were noticed in the cortex and hippocampus regions in the LPS-treated group, accompanied by elevated inflammatory cytokine levels such as tumor necrosis factor-alpha (TNF-α), cyclooxygenase (COX-2), and c-Jun N-terminal kinase (p-JNK). Moreover, amassing of free radicals exacerbated lipid peroxidase (LPO) and oxidative stress with a limited antioxidant capacity. Carveol (20 mg/kg) significantly ameliorated these detrimental effects by promoting the antioxidant Nrf2 gene and protein, which critically regulate the downstream antioxidant and anti-inflammatory pathway. To further elaborate our hypothesis, we employed all-trans retinoic acid (ATRA), an Nrf2 inhibitor, and we found that ATRA exaggerated LPS-induced depressive-like effects associated with elevated neuroinflammatory markers. Our results demonstrated that carveol (20 mg/kg) could activate the endogenous antioxidant Nrf2, which regulates the downstream antioxidant signaling pathway, eventually leading to amelioration of LPS-induced neuroinflammation and neurodegeneration.


Assuntos
Anti-Inflamatórios/uso terapêutico , Monoterpenos Cicloexânicos/uso terapêutico , Transtorno Depressivo Maior/tratamento farmacológico , Fator 2 Relacionado a NF-E2/efeitos dos fármacos , Animais , Anti-Inflamatórios/farmacologia , Monoterpenos Cicloexânicos/farmacologia , Humanos , Masculino , Ratos , Ratos Sprague-Dawley
6.
Oxid Med Cell Longev ; 2021: 9966663, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34422216

RESUMO

Epilepsy is a neurodegenerative brain disorder characterized by recurrent seizure attacks. Numerous studies have suggested a strong correlation between oxidative stress and neuroinflammation in several neurodegenerative disorders including epilepsy. This study is aimed at investigating the neuroprotective effects of the natural compound carveol against pentylenetetrazole- (PTZ-) induced kindling and seizure model. Two different doses of carveol (10 mg/kg and 20 mg/kg) were administered to male rats to determine the effects and the effective dose of carveol and to further demonstrate the mechanism of action of nuclear factor E2-related factor (Nrf2) in PTZ-induced kindling model. Our results demonstrated reduced levels of innate antioxidants such as superoxide dismutase (SOD), catalase, glutathione-S-transferase (GST), and glutathione (GSH), associated with elevated lipid peroxidation (LPO) and inflammatory cytokines level such as tumor necrosis factor-alpha (TNF-α), and mediators like cyclooxygenase (COX-2) and nuclear factor kappa B (NFκB). These detrimental effects exacerbated oxidative stress and provoked a marked neuronal alteration in the cortex and hippocampus of PTZ-intoxicated animals that were associated with upregulated Nrf2 gene expression. Furthermore, carveol treatment positively modulated the antioxidant gene Nrf2 and its downstream target HO-1. To further investigate the role of Nrf2, an inhibitor of Nrf2 called all-trans retinoic acid (ATRA) was used, which further exacerbated PTZ toxicity. Moreover, carveol treatment induced cholinergic system activation by mitigating acetylcholinesterase level which is further linked to attenuated neuroinflammatory cascade. The extent of blood-brain barrier disruption was evaluated based on vascular endothelial growth factor (VEGF) expression. Taken together, our findings suggest that carveol acts as an Nrf2 activator and therefore induces downstream antioxidants and mitigates inflammatory insults through multiple pathways. This eventually alleviates PTZ-induced neuroinflammation and neurodegeneration.


Assuntos
Monoterpenos Cicloexânicos/farmacologia , Epilepsia/complicações , Excitação Neurológica/patologia , Fator 2 Relacionado a NF-E2/metabolismo , Doenças Neuroinflamatórias/prevenção & controle , Pentilenotetrazol/toxicidade , Convulsões/prevenção & controle , Animais , Antioxidantes/farmacologia , Epilepsia/induzido quimicamente , Epilepsia/patologia , Excitação Neurológica/efeitos dos fármacos , Peroxidação de Lipídeos , Masculino , Fator 2 Relacionado a NF-E2/genética , Doenças Neuroinflamatórias/etiologia , Doenças Neuroinflamatórias/patologia , Fármacos Neuroprotetores/farmacologia , Estresse Oxidativo , Ratos , Ratos Sprague-Dawley , Convulsões/etiologia , Convulsões/patologia
7.
Neurotoxicology ; 87: 1-10, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34428482

RESUMO

Herein, we evaluated the neuroprotective effect of melatonin against cisplatin-induced oxidative damage, neuroinflammation, and synaptic dysfunction in mice. Cisplatin was administered at a dose of 2 mg/kg for eleven consecutive days to induce symptoms of cognitive impairment and neurodegeneration, while melatonin was administered at a 20 mg/kg dose for thirty consecutive days. We used various experimental techniques such as western blotting, immunofluorescence analysis, and oxidative stress marker assays to support our notion. Moreover, for cognitive impairment, we conducted behavioral analyses such as Morris Water Maze (MWM) and Y-Maze tests. The results indicated that melatonin attenuated oxidative stress by upregulating the expression of NF-E2-related factor-2 (Nrf2) dependent anti-oxidative protein levels. Similarly, melatonin positively modulated the expression of Sirt1 (a member of the sirtuin family), Phospho-AMPKα (Thr172), peroxisome proliferator-activated receptor (PPARγ), PPAR gamma coactivator 1 alpha (PGC-1α) coupled to downregulation of neuroinflammatory mediators and markers such as nuclear factor kappa-B (NF-κB), tumor necrosis factor-alpha (TNF-α), and interleukin-1 beta (IL-1ß). Moreover, melatonin significantly upregulated the expression of synaptic markers such as postsynaptic density protein -95 (PSD-95), synaptosomal-associated protein 23 (SNAP-23), and synaptophysin compared to the cisplatin alone group. Furthermore, the results of behavior tests suggested that melatonin significantly improved the cognitive functions of the cisplatin injected mice.


Assuntos
Anti-Inflamatórios/farmacologia , Antioxidantes/farmacologia , Encéfalo/efeitos dos fármacos , Cisplatino/toxicidade , Melatonina/farmacologia , Doenças Neurodegenerativas/induzido quimicamente , Fármacos Neuroprotetores/farmacologia , Animais , Western Blotting , Cisplatino/antagonistas & inibidores , Imunofluorescência , Peroxidação de Lipídeos/efeitos dos fármacos , Masculino , Camundongos , Teste do Labirinto Aquático de Morris , Doenças Neurodegenerativas/tratamento farmacológico , Doenças Neuroinflamatórias/induzido quimicamente , Doenças Neuroinflamatórias/tratamento farmacológico , Estresse Oxidativo/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo
8.
Drug Des Devel Ther ; 15: 369-384, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33574656

RESUMO

BACKGROUND: Peripheral inflammation leads to the development of persistent thermal hyperalgesia and mechanical allodynia associated with increased expression of interleukin-1ß (IL-1ß) in the spinal cord. The aim of the present study was to investigate the effects of thiazolidine derivatives, 1b ([2-(2-hydroxyphenyl)-1,3-thiazolidin-4-yl](morpholin-4-yl)methanone) and 1d (2-hydroxy-4-{[2-(2-hydroxyphenyl)-1,3-thiazolidine-4-carbonyl]amino}benzoic acid), on thermal hyperalgesia, mechanical allodynia and on IL-1ß expression during carrageenan-induced inflammation in the spinal cord in mice. Inflammatory pain was induced by injecting 1% carrageenan into the right hind paw of the mice. METHODS: The animals were administered thiazolidine derivatives, 1b and 1d (1 mg/kg, 3 mg/kg, or 10 mg/kg), intraperitoneally 30 minutes before carrageenan administration. The animals' behavior was evaluated by measuring thermal hyperalgesia, mechanical allodynia, and motor coordination. The IL-1ß expression was measured by enzyme-linked immunosorbent assay. Acute and sub-acute toxicity studies were conducted to evaluate the toxicity profile of compounds. RESULTS: Treatment with the thiazolidine derivative, 1b and 1d, attenuated carrageenan-induced thermal hyperalgesia and mechanical allodynia at doses of 1 mg/kg, 3 mg/kg, and 10 mg/kg. No motor coordination deficits were observed in animals. The compounds also reduced IL-1ß expression in the spinal cord of mice. Acute and sub-acute toxicity studies revealed that both compounds were safe. CONCLUSION: The compounds exhibit promising activity against inflammatory pain due to their ability to produce anti-hyperalgesic and anti-allodynic effects and to inhibit IL-1ß expression in the spinal cord.


Assuntos
Hiperalgesia/tratamento farmacológico , Inflamação/tratamento farmacológico , Dor/tratamento farmacológico , Tiazolidinas/uso terapêutico , Animais , Carragenina/administração & dosagem , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Feminino , Hiperalgesia/induzido quimicamente , Hiperalgesia/metabolismo , Inflamação/induzido quimicamente , Inflamação/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Estrutura Molecular , Dor/induzido quimicamente , Dor/metabolismo , Relação Estrutura-Atividade
9.
Biomolecules ; 10(1)2020 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-31936383

RESUMO

Oxidative stress-induced neuroinflammation is the prominent feature of neurodegenerative disorders, and is characterized by a gradual decline of structure and function of neurons. Many biochemical events emerge thanks to the result of this neurodegeneration, and ultimately provoke neuroinflammation, activation of microglia, and oxidative stress, leading to neuronal death. This cascade not only explains the complexity of events taking place across different stages, but also depicts the need for more effective therapeutic agents. The present study was designed to investigate the neuroprotective effects of newly synthesized benzimidazole containing acetamide derivatives, 3a (2-(4-methoxyanilino)-N-[1-(4-methylbenzene-1-sulfonyl)-1H-benzimidazol-2-yl] acetamide) and 3b (2-(Dodecylamino)-N-[1-(4-methylbenzene-1-sulfonyl)-1H-benzimidazol-2-yl] acetamide) against ethanol-induced neurodegeneration in the rat model. Both derivatives were characterized spectroscopically by proton NMR (1H-NMR) and carbon-13 NMR (13C-NMR) and evaluated for neuroprotective potential using different pharmacological approaches. In vivo experiments demonstrated that ethanol triggered neurodegeneration characterized by impaired antioxidant enzymes and elevated oxidative stress. Furthermore, ethanol administration induced neuroinflammation, as demonstrated by elevated expression of tumor necrotic factor (TNF-α), nuclear factor κB (NF-κB), cyclooxygenase-2 (COX2), and ionized calcium-binding adapter molecule-1 (Iba-1), which was further validated by enzyme-linked immunosorbent assay (ELISA). Treatment with 3a and 3b ameliorated the ethanol-induced oxidative stress, neuroinflammation, and memory impairment. The affinity of synthesized derivatives towards various receptors involved in neurodegeneration was assessed through docking analysis. The versatile nature of benzimidazole nucleus and its affinity toward several receptors suggested that it could be a multistep targeting neuroprotectant. As repetitive clinical trials of neuroprotectants targeting a single step of the pathological process have failed previously, our results suggested that a neuroprotective strategy of acting at different stages may be more advantageous to intervene in the vicious cycles of neuroinflammation.


Assuntos
Acetamidas/farmacologia , Benzimidazóis/farmacologia , Acetamidas/síntese química , Acetamidas/metabolismo , Animais , Antioxidantes/farmacologia , Apoptose/efeitos dos fármacos , Benzimidazóis/síntese química , Benzimidazóis/metabolismo , Encéfalo/metabolismo , Etanol/efeitos adversos , Hipocampo/metabolismo , Masculino , Microglia/metabolismo , Simulação de Acoplamento Molecular/métodos , Doenças Neurodegenerativas/metabolismo , Neuroimunomodulação/efeitos dos fármacos , Neurônios/metabolismo , Fármacos Neuroprotetores/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Espécies Reativas de Oxigênio/metabolismo
10.
Front Pharmacol ; 11: 621538, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33597885

RESUMO

Acetaminophen (N-acetyl p-aminophenol or APAP) is used worldwide for its antipyretic and anti-inflammatory potential. However, APAP overdose sometimes causes severe liver damage. In this study, we elucidated the protective effects of carveol in liver injury, using molecular and in silico approaches. Male BALB/c mice were divided into two experimental cohorts, to identify the best dose and to further assess the role of carveol in the nuclear factor E2-related factor; nuclear factor erythroid 2; p45-related factor 2 (Nrf2) pathway. The results demonstrated that carveol significantly modulated the detrimental effects of APAP by boosting endogenous antioxidant mechanisms, such as nuclear translocation of Nrf2 gene, a master regulator of the downstream antioxidant machinery. Furthermore, an inhibitor of Nrf2, called all-trans retinoic acid (ATRA), was used, which exaggerated APAP toxicity, in addition to abrogating the protective effects of carveol; this effect was accompanied by overexpression of inflammatory mediators and liver = 2ltoxicity biomarkers. To further support our notion, we performed virtual docking of carveol with Nrf2-keap1 target, and the resultant drug-protein interactions validated the in vivo findings. Together, our findings suggest that carveol could activate the endogenous master antioxidant Nrf2, which further regulates the expression of downstream antioxidants, eventually ameliorating the APAP-induced inflammation and oxidative stress.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA