Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Inorg Chem ; 62(6): 2680-2693, 2023 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-36716401

RESUMO

Two propeller-shaped chiral CoIII3YIII complexes built from fluorinated ligands are synthesized and characterized by single-crystal X-ray diffraction (SXRD), IR, UV-vis, circular dichroism (CD), elemental analysis, thermogravimetric analysis (TGA), electron spray ionization mass spectroscopy (ESI-MS), and NMR (1H, 13C, and 19F). This work explores the sensing and discrimination abilities of these complexes, thus providing an innovative sensing method using a 19F NMR chemosensory system and opening new directions in 3d/4f chemistry. Control experiments and theoretical studies shed light on the sensing mechanism, while the scope and limitations of this method are discussed and presented.

2.
Front Neurosci ; 17: 1132670, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37034163

RESUMO

Oxidative stress is a significant source of damage that accumulates during aging and contributes to Alzheimer's disease (AD) pathogenesis. Oxidation of proteins can give rise to covalent links between adjacent tyrosines known as dityrosine (DiY) cross-linking, amongst other modifications, and this observation suggests that DiY could serve as a biomarker of accumulated oxidative stress over the lifespan. Many studies have focused on understanding the contribution of DiY to AD pathogenesis and have revealed that DiY crosslinks can be found in both Aß and tau deposits - the two key proteins involved in the formation of amyloid plaques and tau tangles, respectively. However, there is no consensus yet in the field on the impact of DiY on Aß and tau function, aggregation, and toxicity. Here we review the current understanding of the role of DiY on Aß and tau gathered over the last 20 years since the first observation, and discuss the effect of this modification for Aß and tau aggregation, and its potential as a biomarker for AD.

4.
Dalton Trans ; 52(13): 4044-4057, 2023 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-36880418

RESUMO

We synthesised and characterised the racemic and chiral versions of two Zn salan fluorine-based complexes from commercially available materials. The complexes are susceptible to absorbing H2O from the atmosphere. In solution (DMSO-H2O) and at the millimolar level, experimental and theoretical studies identify that these complexes exist in a dimeric-monomeric equilibrium. We also investigated their ability to sense amines via19F NMR. In CDCl3 or d6-DMSO, strongly coordinating molecules (H2O or DMSO) are the limiting factor in using these easy-to-make complexes as chemosensory platforms since their exchange with analytes requires an extreme excess of the latter.

5.
Methods Mol Biol ; 2551: 163-188, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36310203

RESUMO

Tau is a natively unfolded protein that contributes to the stability of microtubules. Under pathological conditions such as Alzheimer's disease (AD), tau protein misfolds and self-assembles to form paired helical filaments (PHFs) and straight filaments (SFs). Full-length tau protein assembles poorly and its self-assembly is enhanced with polyanions such as heparin and RNA in vitro, but a role for heparin or other polyanions in vivo remains unclear. Recently, a truncated form of tau (297-391) has been shown to self-assemble in the absence of additives which provides an alternative in vitro PHF model system. Here we describe methods to prepare in vitro PHFs and SFs from tau (297-391) named dGAE. We also discuss the range of biophysical/biochemical techniques used to monitor tau filament assembly and structure.


Assuntos
Doença de Alzheimer , Proteínas tau , Humanos , Proteínas tau/metabolismo , Emaranhados Neurofibrilares/metabolismo , Doença de Alzheimer/metabolismo , Heparina/metabolismo
6.
Essays Biochem ; 66(7): 1001-1011, 2022 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-36373666

RESUMO

Tau is an intrinsically disordered protein that has the ability to self-assemble to form paired helical and straight filaments in Alzheimer's disease, as well as the ability to form additional distinct tau filaments in other tauopathies. In the presence of microtubules, tau forms an elongated form associated with tubulin dimers via a series of imperfect repeats known as the microtubule binding repeats. Tau has recently been identified to have the ability to phase separate in vitro and in cells. The ability of tau to adopt a wide variety of conformations appears fundamental both to its biological function and also its association with neurodegenerative diseases. The recently highlighted involvement of low-complexity domains in liquid-liquid phase separation provides a critical link between the soluble function and the insoluble dysfunctional properties of tau.


Assuntos
Doença de Alzheimer , Proteínas tau , Humanos , Proteínas tau/química , Proteínas tau/metabolismo , Emaranhados Neurofibrilares/metabolismo , Doença de Alzheimer/metabolismo , Microtúbulos/metabolismo , Tubulina (Proteína)/metabolismo
7.
J Mol Biol ; 434(7): 167466, 2022 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-35077765

RESUMO

The presence of amyloid fibrils is a hallmark of more than 50 human disorders, including neurodegenerative diseases and systemic amyloidoses. A key unresolved challenge in understanding the involvement of amyloid in disease is to explain the relationship between individual structural polymorphs of amyloid fibrils, in potentially mixed populations, and the specific pathologies with which they are associated. Although cryo-electron microscopy (cryo-EM) and solid-state nuclear magnetic resonance (ssNMR) spectroscopy methods have been successfully employed in recent years to determine the structures of amyloid fibrils with high resolution detail, they rely on ensemble averaging of fibril structures in the entire sample or significant subpopulations. Here, we report a method for structural identification of individual fibril structures imaged by atomic force microscopy (AFM) by integration of high-resolution maps of amyloid fibrils determined by cryo-EM in comparative AFM image analysis. This approach was demonstrated using the hitherto structurally unresolved amyloid fibrils formed in vitro from a fragment of tau (297-391), termed 'dGAE'. Our approach established unequivocally that dGAE amyloid fibrils bear no structural relationship to heparin-induced tau fibrils formed in vitro. Furthermore, our comparative analysis resulted in the prediction that dGAE fibrils are structurally closely related to the paired helical filaments (PHFs) isolated from Alzheimer's disease (AD) brain tissue characterised by cryo-EM. These results show the utility of individual particle structural analysis using AFM, provide a workflow of how cryo-EM data can be incorporated into AFM image analysis and facilitate an integrated structural analysis of amyloid polymorphism.


Assuntos
Doença de Alzheimer , Amiloide , Amiloidose , Doença de Alzheimer/patologia , Amiloide/química , Proteínas Amiloidogênicas/química , Amiloidose/patologia , Microscopia Crioeletrônica/métodos , Humanos , Microscopia de Força Atômica , Estrutura Secundária de Proteína
8.
Chem Commun (Camb) ; 58(74): 10388-10391, 2022 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-36039700

RESUMO

A functionalised dipeptide that self-assembles to form wormlike micelles at high pH can be treated as a surfactant. By varying salt concentration, the self-assembled structures and interactions between them change, resulting in solutions with very different shear and extensional viscosity. From these, gel noodles with different mechanical properties can be prepared.


Assuntos
Micelas , Tensoativos , Tensoativos/química , Viscosidade
9.
J Mol Biol ; 434(19): 167785, 2022 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-35961386

RESUMO

A characteristic hallmark of Alzheimer's Disease (AD) is the pathological aggregation and deposition of tau into paired helical filaments (PHF) in neurofibrillary tangles (NFTs). Oxidative stress is an early event during AD pathogenesis and is associated with tau-mediated AD pathology. Oxidative environments can result in the formation of covalent dityrosine crosslinks that can increase protein stability and insolubility. Dityrosine cross-linking has been shown in Aß plaques in AD and α-synuclein aggregates in Lewy bodies in ex vivo tissue sections, and this modification may increase the insolubility of these aggregates and their resistance to degradation. Using the PHF-core tau fragment (residues 297 - 391) as a model, we have previously demonstrated that dityrosine formation traps tau assemblies to reduce further elongation. However, it is unknown whether dityrosine crosslinks are found in tau deposits in vivo in AD and its relevance to disease mechanism is unclear. Here, using transmission electron microscope (TEM) double immunogold-labelling, we reveal that neurofibrillary NFTs in AD are heavily decorated with dityrosine crosslinks alongside tau. Single immunogold-labelling TEM and fluorescence spectroscopy revealed the presence of dityrosine on AD brain-derived tau oligomers and fibrils. Using the tau (297-391) PHF-core fragment as a model, we further showed that prefibrillar tau species are more amenable to dityrosine crosslinking than tau fibrils. Dityrosine formation results in heat and SDS stability of oxidised prefibrillar and fibrillar tau assemblies. This finding has implications for understanding the mechanism governing the insolubility and toxicity of tau assemblies in vivo.


Assuntos
Doença de Alzheimer , Emaranhados Neurofibrilares , Tirosina , Proteínas tau , Doença de Alzheimer/metabolismo , Humanos , Emaranhados Neurofibrilares/química , Conformação Proteica em alfa-Hélice , Tirosina/análogos & derivados , Tirosina/química , alfa-Sinucleína/química , Proteínas tau/química
10.
Front Neurosci ; 16: 988074, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36570831

RESUMO

Aggregation of the tau protein into fibrillar cross-ß aggregates is a hallmark of Alzheimer's diseases (AD) and many other neurodegenerative tauopathies. Recently, several core structures of patient-derived tau paired helical filaments (PHFs) have been solved revealing a structural variability that often correlates with a specific tauopathy. To further characterize the dynamics of these fibril cores, to screen for strain-specific small molecules as potential biomarkers and therapeutics, and to develop strain-specific antibodies, recombinant in-vitro models of tau filaments are needed. We recently showed that a 95-residue fragment of tau (from residue 297 to 391), termed dGAE, forms filaments in vitro in the absence of polyanionic co-factors often used for in vitro aggregation of full-length tau. Tau(297-391) was identified as the proteolytic resistant core of tau PHFs and overlaps with the structures characterized by cryo-electron microscopy in ex vivo PHFs, making it a promising model for the study of AD tau filaments in vitro. In the present study, we used solid-state NMR to characterize tau(297-391) filaments and show that such filaments assembled under non-reducing conditions are more dynamic and less ordered than those made in the presence of the reducing agent DTT. We further report the resonance assignment of tau(297-391)+DTT filaments and compare it to existing core structures of tau.

11.
Cells ; 10(3)2021 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-33809978

RESUMO

The self-assembly of tau into paired helical filaments (PHFs) in neurofibrillary tangles (NFTs) is a significant event in Alzheimer's disease (AD) pathogenesis. Numerous post-translational modifications enhance or inhibit tau assembly into NFTs. Oxidative stress, which accompanies AD, induces multiple post-translational modifications in proteins, including the formation of dityrosine (DiY) cross-links. Previous studies have revealed that metal-catalysed oxidation (MCO) using Cu2+ and H2O2 leads to the formation of DiY cross-links in two misfolding proteins, Aß and α-synuclein, associated with AD and Parkinson's disease respectively. The effect of MCO on tau remains unknown. Here, we examined the effect of MCO and ultra-violet oxidation to study the influence of DiY cross-linking on the self-assembly of the PHF-core tau fragment. We report that DiY cross-linking facilitates tau assembly into tau oligomers that fail to bind thioflavin S, lack ß-sheet structure and prevents their elongation into filaments. At a higher concentration, Cu2+ (without H2O2) also facilitates the formation of these tau oligomers. The DiY cross-linked tau oligomers do not cause cell death. Our findings suggest that DiY cross-linking of pre-assembled tau promotes the formation of soluble tau oligomers that show no acute impact on cell viability.


Assuntos
Neurônios/metabolismo , Estresse Oxidativo , Fragmentos de Peptídeos/metabolismo , Processamento de Proteína Pós-Traducional , Espécies Reativas de Oxigênio/metabolismo , Proteínas tau/metabolismo , Linhagem Celular Tumoral , Quelantes/farmacologia , Cobre/farmacologia , Ácido Edético/farmacologia , Humanos , Peróxido de Hidrogênio/farmacologia , Neurônios/efeitos dos fármacos , Neurônios/patologia , Oxidantes/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Conformação Proteica em Folha beta , Multimerização Proteica , Processamento de Proteína Pós-Traducional/efeitos dos fármacos , Solubilidade , Relação Estrutura-Atividade
12.
Front Mol Biosci ; 8: 779240, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34778381

RESUMO

Tau35 is a truncated form of tau found in human brain in a subset of tauopathies. Tau35 expression in mice recapitulates key features of human disease, including progressive increase in tau phosphorylation, along with cognitive and motor dysfunction. The appearance of aggregated tau suggests that Tau35 may have structural properties distinct from those of other tau species that could account for its pathological role in disease. To address this hypothesis, we performed a structural characterization of monomeric and aggregated Tau35 and compared the results to those of two longer isoforms, 2N3R and 2N4R tau. We used small angle X-ray scattering to show that Tau35, 2N3R and 2N4R tau all behave as disordered monomeric species but Tau35 exhibits higher rigidity. In the presence of the poly-anion heparin, Tau35 increases thioflavin T fluorescence significantly faster and to a greater extent than full-length tau, demonstrating a higher propensity to aggregate. By using atomic force microscopy, circular dichroism, transmission electron microscopy and X-ray fiber diffraction, we provide evidence that Tau35 aggregation is mechanistically and morphologically similar to previously reported tau fibrils but they are more densely packed. These data increase our understanding of the aggregation inducing properties of clinically relevant tau fragments and their potentially damaging role in the pathogenesis of human tauopathies.

13.
iScience ; 23(10): 101537, 2020 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-33083713

RESUMO

Dityrosine (DiY), via the cross-linking of tyrosine residues, is a marker of protein oxidation, which increases with aging. Amyloid-ß (Aß) forms DiY in vitro and DiY-cross-linked Aß is found in the brains of patients with Alzheimer disease. Metal- or UV- catalyzed oxidation of Aß42 results in an increase in DiY cross-links. Using DiY as a marker of oxidation, we compare the self-assembly propensity and DiY cross-link formation for a non-assembly competent variant of Aß42 (vAß) with wild-type Aß42. Oxidation results in the formation of trapped wild-type Aß assemblies with increased DiY cross-links that are unable to elongate further. Assembly-incompetent vAß and trapped Aß assemblies are non-toxic to neuroblastoma cells at all stages of self-assembly, in contrast to oligomeric, non-cross-linked Aß. These findings point to a mechanism of toxicity that necessitates dynamic self-assembly whereby trapped Aß assemblies and assembly-incompetent variant Aß are unable to result in cell death.

14.
J Mol Biol ; 432(17): 4891-4907, 2020 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-32681841

RESUMO

Assembly of tau protein into paired helical filaments and straight filaments is a key feature of Alzheimer's disease. Aggregation of tau has been implicated in neurodegeneration, cellular toxicity and the propagation, which accompanies disease progression. We have reported previously that a region of tau (297-391), referred to as dGAE, assembles spontaneously in physiological conditions to form paired helical filament-like fibres in vitro in the absence of additives such as heparin. This provides a valuable tool with which to explore the effects of tau in cell culture. Here we have studied the cellular uptake of soluble oligomeric and fibrillar forms of dGAE and examined the downstream consequences of tau internalisation into differentiated SH-SY5Y neuroblastoma cells using fluorescence and electron microscopy alongside structural and biochemical analyses. The assembled dGAE shows more acute cytotoxicity than the soluble, non-aggregated form. Conversely, the soluble form is much more readily internalised and, once within the cell, is able to associate with endogenous tau resulting in increased phosphorylation and aggregation of endogenous tau, which accumulates in lysosomal/endosomal compartments. It appears that soluble oligomeric forms are able to propagate tau pathology without being acutely toxic. The model system we have developed now permits the molecular mechanisms of propagation of tau pathology to be studied in vitro in a more physiological manner with a view to development of novel therapeutic approaches.


Assuntos
Neurônios/citologia , Proteínas tau/química , Proteínas tau/metabolismo , Linhagem Celular , Proliferação de Células , Heparina/metabolismo , Humanos , Microscopia Eletrônica , Microscopia de Fluorescência , Neurônios/metabolismo , Domínios Proteicos , Multimerização Proteica , Estrutura Secundária de Proteína
15.
Front Neurol ; 11: 590754, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33281730

RESUMO

Tau plays an important pathological role in a group of neurodegenerative diseases called tauopathies, including Alzheimer's disease, Pick's disease, chronic traumatic encephalopathy and corticobasal degeneration. In each disease, tau self-assembles abnormally to form filaments that deposit in the brain. Tau is a natively unfolded protein that can adopt distinct structures in different pathological disorders. Cryo-electron microscopy has recently provided a series of structures for the core of the filaments purified from brain tissue from patients with different tauopathies and revealed that they share a common core region, while differing in their specific conformation. This structurally resolvable part of the core is contained within a proteolytically stable core region from the repeat domain initially isolated from AD tau filaments. Tau has recently become an important target for therapy. Recent work has suggested that the prevention of tau self-assembly may be effective in slowing the progression of Alzheimer's disease and other tauopathies. Here we review the work that explores the importance of tau filament structures and tau self-assembly mechanisms, as well as examining model systems that permit the exploration of the mode of action of potential inhibitors.

16.
FEBS Lett ; 594(5): 944-950, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31721178

RESUMO

The constituent paired helical filaments (PHFs) in neurofibrillary tangles are insoluble intracellular deposits central to the development of Alzheimer's disease (AD) and other tauopathies. Full-length tau requires the addition of anionic cofactors such as heparin to enhance assembly. We have shown that a fragment from the proteolytically stable core of the PHF, tau 297-391 known as 'dGAE', spontaneously forms cross-ß-containing PHFs and straight filaments under physiological conditions. Here, we have analysed and compared the structures of the filaments formed by dGAE in vitro with those deposited in the brains of individuals diagnosed with AD. We show that dGAE forms PHFs that share a macromolecular structure similar to those found in brain tissue. Thus, dGAEs may serve as a model system for studying core domain assembly and for screening for inhibitors of tau aggregation.


Assuntos
Doença de Alzheimer/metabolismo , Emaranhados Neurofibrilares/ultraestrutura , Proteínas tau/química , Proteínas tau/metabolismo , Encéfalo/metabolismo , Humanos , Microscopia de Força Atômica , Microscopia Eletrônica de Transmissão , Domínios Proteicos , Proteínas tau/ultraestrutura
17.
Methods Mol Biol ; 1873: 109-122, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30341606

RESUMO

Many proteins and peptides are able to self-assemble in solution in vitro and in vivo to form amyloid-like fibrils. These fibrils share common structural characteristics. In order for a fibril to be characterized as amyloid, it is expected to fit certain criteria including the composition of cross-ß. Here we describe how the formation of amyloid fibrils can be characterized in vitro using a variety of methods including circular dichroism and intrinsic tyrosine/tryptophan fluoresence to follow conformational changes; Thioflavin and/or ThS assembly to monitor nucleation and growth; transmission electron microscopy to visualize fibrillar morphology and X-ray fiber diffraction to examine cross-ß structure.


Assuntos
Amiloide/química , Proteínas Amiloidogênicas/química , Modelos Moleculares , Conformação Proteica , Amiloide/metabolismo , Peptídeos beta-Amiloides/química , Peptídeos beta-Amiloides/metabolismo , Proteínas Amiloidogênicas/metabolismo , Benzotiazóis/química , Benzotiazóis/metabolismo , Dicroísmo Circular , Imuno-Histoquímica , Microscopia Eletrônica de Transmissão , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/metabolismo , Ligação Proteica , Multimerização Proteica , Deficiências na Proteostase/etiologia , Deficiências na Proteostase/metabolismo , Relação Quantitativa Estrutura-Atividade , Difração de Raios X
18.
Dalton Trans ; 48(41): 15371-15375, 2019 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-31107476

RESUMO

The heterometallic Zn2Dy2 entity bearing partially saturated metal centres covalently decorates a highly ordered amyloid fibril core and the functionalised assembly exhibits catalytic Lewis acid behaviour.


Assuntos
Amiloide/química , Disprósio/química , Oligopeptídeos/química , Agregados Proteicos , Zinco/química , Sequência de Aminoácidos , Catálise , Modelos Moleculares , Conformação Molecular
19.
J Mol Biol ; 431(12): 2248-2265, 2019 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-31051176

RESUMO

Apolipoprotein E4 (ApoE4) is one of three (E2, E3 and E4) human isoforms of an α-helical, 299-amino-acid protein. Homozygosity for the ε4 allele is the major genetic risk factor for developing late-onset Alzheimer's disease (AD). ApoE2, ApoE3 and ApoE4 differ at amino acid positions 112 and 158, and these sequence variations may confer conformational differences that underlie their participation in the risk of developing AD. Here, we compared the shape, oligomerization state, conformation and stability of ApoE isoforms using a range of complementary biophysical methods including small-angle x-ray scattering, analytical ultracentrifugation, circular dichroism, x-ray fiber diffraction and transmission electron microscopy We provide an in-depth and definitive study demonstrating that all three proteins are similar in stability and conformation. However, we show that ApoE4 has a propensity to polymerize to form wavy filaments, which do not share the characteristics of cross-ß amyloid fibrils. Moreover, we provide evidence for the inhibition of ApoE4 fibril formation by ApoE3. This study shows that recombinant ApoE isoforms show no significant differences at the structural or conformational level. However, self-assembly of the ApoE4 isoform may play a role in pathogenesis, and these results open opportunities for uncovering new triggers for AD onset.


Assuntos
Doença de Alzheimer/metabolismo , Amiloide/metabolismo , Apolipoproteína E4/metabolismo , Doença de Alzheimer/etiologia , Doença de Alzheimer/patologia , Amiloide/química , Amiloide/ultraestrutura , Apolipoproteína E4/química , Apolipoproteína E4/ultraestrutura , Humanos , Conformação Proteica , Isoformas de Proteínas/química , Isoformas de Proteínas/metabolismo , Isoformas de Proteínas/ultraestrutura , Multimerização Proteica , Estabilidade Proteica , Fatores de Risco
20.
Chem Sci ; 10(33): 7801-7806, 2019 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-31588329

RESUMO

Most low molecular weight gelators are chiral, with racemic mixtures often unable to form gels. Here, we show an example where all enantiomers, diastereomers and racemates of a single functionalized dipeptide can form gels. At high pH, different self-assembled aggregates are formed and these directly template the structures formed in the gel. Hence, solutions and gels with different properties can be accessed simply by varying the chirality. This opens up new design rules for the field.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA